Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 107: 154350, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36194974

ABSTRACT

BACKGROUND: Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disease. Tong-Xie-Yao-Fang (TXYF), the traditional Chinese herbal medicine prescription, is a classic and effective prescription for the treatment of IBS-D, but its mechanism of action is not fully clarified. OBJECTIVE: To evaluate the efficacy of TXYF in the treatment of IBS-D and to explore its potential mechanism of action. METHODS: Changes in the serum levels of 50 free amino acids were targeted for detection by high-performance liquid chromatography (HPLC), and the expression of glucose-regulated protein 78 (GRP78), general control nonderepressible 2 (GCN2), and endoplasmic reticulum-resident kinase (PERK) was detected by immunohistochemistry examinations in healthy volunteers and IBS-D patients. The IBS-D rat was constructed by the three-factor superposition method of neonatal maternal separation, 2,4,6-trinitrobenzene sulfonic acid enema, and chronic unpredictable stress stimulation. The treatment effect of TXYF on IBS-D rats was observed by recording the body weight, grasp force, fecal water content (FWC), and abdominal withdrawal reflex (AWR) of rats before and after treatment. The effects of GCN2/PERK-eukaryotic initiation factor-2 (eIF2α) -activating transcription Factor 4 (ATF4) pathway proteins and gene expression were analyzed by western blotting, reverse transcription-polymerase chain reaction (RT-qPCR), and immunohistochemistry evaluations. RESULTS: Compared with healthy volunteers, IBS-D patients exhibited lower levels of cysteine, γ-aminoacetic acid (GABA), homoproline, and lysine, and immunohistochemistry showed strong activation of GRP78, a marker of endoplasmic reticulum stress. Differential expression of GCN2 and PERK proteins was detected in IBS-D patients and rat colons. In the IBS-D rats, TXYF improved the body weight and grasp force, reduced the FWC, and improved the AWR score. TXYF increased the levels of p-GCN2 and GCN2 and reduced the levels of GRP78, p-PERK, PERK, p-eIF2α, and eIF2α, thereby affecting the expression of the apoptosis-related transcription factors ATF4, CHOP, Caspase-3, and Bcl-2. CONCLUSION: Our study showed that TXYF improved IBS-D by inhibiting apoptosis. The anti-apoptosis effects were potentially mediated by regulating the GCN2/PERK-eIF2a-ATF4 signaling pathway.


Subject(s)
Drugs, Chinese Herbal , Irritable Bowel Syndrome , Activating Transcription Factor 4/metabolism , Animals , Body Weight , Caspase 3/metabolism , Cysteine/pharmacology , Cysteine/therapeutic use , Diarrhea/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Eukaryotic Initiation Factor-2/metabolism , Glycine/pharmacology , Glycine/therapeutic use , Irritable Bowel Syndrome/drug therapy , Irritable Bowel Syndrome/metabolism , Lysine , Maternal Deprivation , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Signal Transduction , Trinitrobenzenesulfonic Acid/pharmacology , Trinitrobenzenesulfonic Acid/therapeutic use , Water , eIF-2 Kinase/metabolism , gamma-Aminobutyric Acid
2.
Plant Sci ; 317: 111209, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35193734

ABSTRACT

Arabidopsis K+-efflux antiporter (KEA)1 and KEA2 are chloroplast inner envelope membrane K+/H+ antiporters that play an important role in plastid development and seedling growth. However, the function of KEA1 and KEA2 during early seedling development is poorly understood. In this work, we found that in Arabidopsis, KEA1 and KEA2 mediated primary root growth by regulating photosynthesis and the ABA signaling pathway. Phenotypic analyses revealed that in the absence of sucrose, the primary root length of the kea1kea2 mutant was significantly shorter than that of the wild-type Columbia-0 (Col-0) plant. However, this phenotype could be remedied by the external application of sucrose. Meanwhile, HPLC-MS/MS results showed that in sucrose-free medium, ABA accumulation in the kea1kea2 mutant was considerably lower than that in Col-0. Transcriptome analysis revealed that many key genes involved in ABA signals were repressed in the kea1kea2 mutant. We concluded that KEA1 and KEA2 deficiency not only affected photosynthesis but was also involved in primary root growth likely through an ABA-dependent manner. This study confirmed the new function of KEA1 and KEA2 in affecting primary root growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Mutation , Plant Roots/metabolism , Potassium-Hydrogen Antiporters/genetics , Potassium-Hydrogen Antiporters/metabolism , Sucrose/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...