Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Food Chem ; 448: 139085, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38518444

ABSTRACT

The effects and underlying molecular mechanisms of binary probiotics (Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953 and Lacticaseibacillus casei CGMCC 1.5956) on the quality of wolfberry fermented beverages (WFB) were investigated. The results indicated that binary probiotics increased the number of probiotics, anthocyanin (89.92 ± 1.64 mg/L), polyphenol content (283.04 ± 3.81 µg/mL), and odor score (24.19) in WFB. Metabolomics found that they could enhance signal exchange (cyclic AMP) between binary probiotics and improve the utilization of citrulline, d-proline, d-glucose, and d-galactose through galactose metabolism and amino acid biosynthesis pathway to promote probiotics growth. Furthermore, HS-SPME-GC-MS and GS-IMS revealed that the improvement in flavor was mainly due to an increase in the content of the aromatic flavor substances 3-heptanol, glutaraldehyde, and 2-heptanone, and a decrease in the content of the off-flavor substances methyl isobutyl ketone-D and 2-undecanone. This is strategically important for the development of WFB with high probiotic content and unique flavor.


Subject(s)
Anthocyanins , Fermentation , Odorants , Polyphenols , Probiotics , Polyphenols/metabolism , Polyphenols/analysis , Polyphenols/chemistry , Odorants/analysis , Anthocyanins/analysis , Anthocyanins/metabolism , Probiotics/metabolism , Probiotics/analysis , Probiotics/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry
2.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472852

ABSTRACT

The effects of low-sodium salt mixture substitution on the sensory quality, protein oxidation, and hydrolysis of air-dried chicken and its molecular mechanisms were investigated based on tandem mass tagging (TMT) quantitative proteomics. The composite salt formulated with 1.6% KCl, 0.8% MgCl2, and 5.6% NaCl was found to improve the freshness and texture quality scores. Low-sodium salt mixture substitution significantly decreased the carbonyl content (1.52 nmol/mg), surface hydrophobicity (102.58 µg), and dimeric tyrosine content (2.69 A.U.), and significantly increased the sulfhydryl content (74.46 nmol/mg) and tryptophan fluorescence intensity, suggesting that protein oxidation was inhibited. Furthermore, low-sodium salt mixture substitution significantly increased the protein hydrolysis index (0.067), and cathepsin B and L activities (102.13 U/g and 349.25 U/g), suggesting that protein hydrolysis was facilitated. The correlation results showed that changes in the degree of protein hydrolysis and protein oxidation were closely related to sensory quality. TMT quantitative proteomics indicated that the degradation of myosin and titin as well as changes in the activities of the enzymes, CNDP2, DPP7, ABHD12B, FADH2A, and AASS, were responsible for the changes in the taste quality. In addition, CNDP2, ALDH1A1, and NMNAT1 are key enzymes that reduce protein oxidation. Overall, KCl and MgCl2 composite salt substitution is an effective method for producing low-sodium air-dried chicken.

3.
J Sci Food Agric ; 104(2): 1107-1115, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37736877

ABSTRACT

BACKGROUND: Goose liver oil (GLO) is a solid-liquid mixture, rich in polyunsaturated fatty acids and high in nutritional value, but poor in fluidity and easily oxidized. Therefore, oil-in-water (O/W) Pickering emulsions of three polysaccharides and soy protein isolate (SPI) with GLO were prepared to improve the stability of it. RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared spectroscopy, and zeta potential revealed that the SPI and complexes with konjac glucomannan, pectin, and guar gum (GG) ranged from 17 to 75 kDa, with the site of action being the -OH stretch and the amide group, and bound by hydrogen bonding. Adding konjac glucomannan and GG significantly increased the water contact angle of the SPI to 74.1° and 59.0°, respectively. Therefore, the protein-polysaccharide complexes could enhance the emulsion stability. In addition, the O/W Pickering emulsions with GLO had near-Newtonian fluid rheological properties with a significant increase in apparent viscosity and viscoelasticity, forming a dual network structure consisting of a ductile and flexible protein network and a rigid and brittle polysaccharide network. The microstructure observation indicated that the O/W emulsions were spherical and homogeneous. The highest emulsification activity was observed for the SPI-GG-GLO emulsions, without significant delamination or flocculation and high oxidative stability after 7 days in storage. CONCLUSION: These results demonstrate that the construction of SPI-GG-GLO O/W Pickering emulsions can stabilize GLO even at high temperatures that promote oxidation. © 2023 Society of Chemical Industry.


Subject(s)
Geese , Soybean Proteins , Animals , Emulsions/chemistry , Soybean Proteins/chemistry , Temperature , Polysaccharides/chemistry , Liver , Water/chemistry
4.
Food Res Int ; 174(Pt 1): 113596, 2023 12.
Article in English | MEDLINE | ID: mdl-37986459

ABSTRACT

The optimization of processed meats through salt replacement using KCl and k-lactate may reduce the risk of chronic diseases through reduction in dietary sodium. The objective of this study was to investigate the changes and relationships between microbial and lipid metabolism during the fermentation of restructured duck ham with different salt substitutions. Lactobacillus and Staphylococcus were found to be the dominant bacterial species in the 30 % KCl + 70 % NaCl (w/w) and 25 % k-lactate + 75 % NaCl (w/w). The LefSe analysis showed that different biomarkers were present in different ham groups, and the PLS-DA showed that triglycerides (GL) and glycerophospholipids (GP) were the two classes with the highest abundance. Besides, the KEGG pathway analysis revealed that glycerophospholipid metabolism and triglyceride metabolism were also the main metabolic pathways. According to the correlation study, Staphylococcus, Halomonas, and Lactobacillus were mostly linked to the important metabolic pathways in restructured ham. Our findings serve as a foundation for quality assurance and product enhancement for low-salt restructured ham.


Subject(s)
Pork Meat , Sodium Chloride , Chromatography, Liquid , Lipidomics , Tandem Mass Spectrometry , Sodium Chloride, Dietary , Lactic Acid , High-Throughput Nucleotide Sequencing
5.
Physiol Plant ; 175(3): e13925, 2023.
Article in English | MEDLINE | ID: mdl-37161507

ABSTRACT

Type 2C protein phosphatases (PP2Cs) play key roles in regulating plant senescence and ripening. Here, we discovered a subfamily F PP2C, SlPP2C, associated with leaf senescence through transcriptome analysis. The gene expression, protein accumulation, and promoter activity of SlPP2C all gradually increased along with the progression of leaf and flower senescence and fruit ripening in tomato. Also, the expression of SlPP2C was highly up-regulated by the senescent-inducible hormone treatments, showing more sensitivity to ethylene (ETH) and abscisic acid (ABA). Meanwhile, SlPP2C RNA interference (RNAi) tomato transgenic lines showed obvious delayed senescence and ripening phenotypes of leaves, flowers, and fruits. SlPP2C RNAi lines delayed leaf senescence with higher chlorophyll fluorescence and content, and lower expressions of senescence marker genes (SlSGR1 and SlSAG12) compared to WT. SlPP2C RNAi lines clearly delayed flower senescence time; it was at least twice longer than WT. SlPP2C RNAi lines delayed fruit ripening, exhibiting higher firmness and lower polygalacturonase activity compared to WT. In addition, we proved that SlPP2C is unable to interact with any of the ABA receptors (SlPYLs). Together, the results demonstrate that SlPP2C is a senescence-related and ripening-related gene.


Subject(s)
Plant Senescence , Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ethylenes/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
6.
Food Chem ; 406: 135020, 2023 Apr 16.
Article in English | MEDLINE | ID: mdl-36446277

ABSTRACT

The effects of binary probiotics (Lacticaseibacillus casei CGMCC1.5956 and Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953) in conjunction with wolfberry dietary fiber (WDF) on yogurt quality were investigated in this study. d-fructose, ß-d-glucose, 6-acetyl-d-glucose, and 1-ketose in WDF significantly improved syneresis, apparent viscosity, and elastic behavior of yogurt. Binary probiotics were more suitable for fermenting WDF yogurt than single probiotics, resulting in a higher viable count (9.39 lg (CFU/mL)) and unique flavor. Binary probiotics can promote the production of tyrosol by L. casei 56 through the tyrosine metabolic pathway, thereby enhancing the resistance of L. casei 56 and L. plantarum 53 to their environment and promoting growth. Pyridine, 2,3,4,5-tetrahydro- and prenol might be responsible for the high odor scores in the sensory evaluation of WDF yogurt prepared using binary probiotics. In summary, combining binary probiotics and WDF can significantly improve yogurt quality and add value to the final product.


Subject(s)
Lycium , Probiotics , Yogurt , Probiotics/metabolism , Dietary Fiber , Glucose
7.
J Dairy Sci ; 106(2): 852-867, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36494222

ABSTRACT

This study developed and characterized a γ-aminobutyric acid (GABA)-enriched yogurt fermented by Levilactobacillus brevis CGMCC1.5954. The GABA content in the yogurt was 147.36 mg/100 mL, which was 317.06% higher than that of the control group. Furthermore, there was a significant improvement in the aroma, hardness, adhesion, cohesiveness, and gelatinousness of yogurt. The chromatography and metabolomics analyses further confirmed the high GABA content in yogurt and its nutritional value, and the metabolic pathway for GABA production by L. brevis 54 was identified. A total of 58 volatile flavor compounds were identified using headspace solid-phase microextraction-gas chromatography-mass spectrometry, of which 2-nonanone and 2-heptanone may be responsible for the high odor score of GABA-enriched yogurt. This study developed a nutritious and unique GABA-enriched flavored yogurt, summarized the metabolic pathway of GABA, and provided a flavor fingerprint that could guide the production of specifically flavored yogurts.


Subject(s)
Levilactobacillus brevis , Animals , Fermentation , Yogurt/analysis , gamma-Aminobutyric Acid/analysis , Gas Chromatography-Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/veterinary
8.
Front Nutr ; 9: 1041655, 2022.
Article in English | MEDLINE | ID: mdl-36438739

ABSTRACT

Dairy-derived peptides and corn-derived peptides have been identified as essential ingredients for health promotion in the food industry. The hydrolysis based on lactic acid bacteria (LAB) protease system is one of the most popular methods to prepare bioactive peptides. The objectives of this paper are to develop antioxidant fermented milk and to obtain natural antioxidant peptides. In our study, LAB with antioxidant capacity were screened in vitro, and the corn fermented milk with antioxidant capacity was achieved by the traditional fermentation method. Fermented milk was purified by ultrafiltration and molecular sieve, and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our findings demonstrate that Limosilactobacillus fermentum L15 had a scavenging capacity of more than 80% of DPPH radicals, Trolox equivalent antioxidant capacity (TEAC) of 0.348 ± 0.005 mmol/L. Meanwhile, the peptide content of corn fermented milk prepared with L. fermentum L15 was 0.914 ± 0.009 mg/mL and TAEC of 0.781 ± 0.020 mmol/L. Particularly important, IGGIGTVPVGR and LTTVTPGSR isolated and extracted from fermented milk were found to have antioxidant capacity for the first time. The synthetic peptides IGGIGTVPVGR and LTTVTPGSR demonstrated a scavenging capacity of 70.07 ± 2.71% and 70.07 ± 2.77% for DPPH radicals and an antioxidant capacity of 0.62 ± 0.01 mmol/L and 0.64 ± 0.02 mmol/L Trolox equivalent, respectively. This research provides ideas and basis for the development and utilization of functional dairy products.

9.
Front Microbiol ; 13: 984506, 2022.
Article in English | MEDLINE | ID: mdl-36160254

ABSTRACT

The number of viable lactic acid bacteria (LAB) is a key indicator of the quality of fermented milk. Currently, the combination of propidium monoazide (PMA) and qPCR has been applied in the quantification of viable bacteria in various matrices. In this research, the PMA-qPCR method was used to detect the number of viable bacteria of each LAB species in fermented milk. By analyzing pheS gene and 16S rRNA gene sequence similarities in five species of LAB, namely Lactobacillus delbrueckii subsp. bulgaricus, Lactiplantibacillus plantarum, Streptococcus thermophilus, Lactobacillus helveticus, and Lactococcus lactis subsp. lactis, the pheS gene resolved species identities better and was thus selected to design specific primers and probes. The pheS gene was cloned into the pUC19 vector and used to construct a standard curve for absolute quantification. Standard curves for quantification were constructed for each LAB species for serial dilutions between 1011 and 106 CFU/mL, with R 2 > 0.99. The number of viable bacteria in the fermented milk detected by PMA-qPCR was significantly lower than that of qPCR (P < 0.05), indicating that PMA inhibited the amplification of DNA from dead cells. This was corroborated by the results from bacterial staining and plate count experiments. The proposed PMA-qPCR method provided rapid qualitative and quantitative determination of the number of viable bacteria for each LAB species in fermented milk within 3 h.

10.
Front Microbiol ; 13: 908145, 2022.
Article in English | MEDLINE | ID: mdl-35633722

ABSTRACT

The function of the autoinducer-2 exporters (AI-2E) family transporter protein of Lactobacillus acidophilus is still unclear. The phylogenetic analysis was used to analyze the relationship between the AI-2E protein of the L. acidophilus CICC 6074 strain and other AI-2E family members. Escherichia coli KNabc strain was used to verify whether the protein has Na+ (Li+)/H+ antiporter activity. The AI-2E protein overexpression strain was constructed by using the pMG36e expression vector, and the overexpression efficiency was determined by real-time quantitative PCR. The vitality and AI-2 activity of L. acidophilus CICC 6074 strains were determined. The results showed that the AI-2E protein of Lactobacillus formed a single branch on the phylogenetic tree and was closer to the AI-2E family members whose function was AI-2 exporter group I. The expression of AI-2E protein in the E. coli KNabc strain did not recover the resistance of the bacteria to the saline environment. Overexpression of AI-2E protein in L. acidophilus CICC 6074 could promote the AI-2 secretion of L. acidophilus CICC 6074 strain and enhance their survival ability in intestinal juice.

11.
Foods ; 10(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34945617

ABSTRACT

The number of live lactic acid bacteria (LAB) is an important quality indicator for yogurt, the quantitative testing of LAB has become an important task in the evaluation of product quality and function. By analyzing and comparing the performance of 16S rRNA gene and tuf gene used in absolute quantification, the tuf gene with copy number 1 was selected as the target gene of six LAB. By drawing a standard curve to achieve qualitative and quantitative detection of six strains of LAB, the detection range was found to be 1 × 103-1 × 108 copies/µL. The traditional plate colony count and Flow Cytometry (FCM) were compared with the method of qPCR, which was used in this experiment. Meanwhile, the confocal laser microscope combined with STYO 9 and propidium iodide dyes was used to determine that the content of viable bacteria in the yogurt was more than 90%, which proved that the detection result using qPCR method was closer to the true level of LAB in yogurt. Compared with the existing methods, the method in this study allowed the qualitative and quantitative detection of the six kinds of LAB in yogurt, and the distribution of live and dead bacteria in yogurt could be calculated.

12.
Front Nutr ; 8: 791886, 2021.
Article in English | MEDLINE | ID: mdl-35059425

ABSTRACT

Superoxide dismutase (SOD) is an important antioxidant enzyme with different physiological functions, which can be used as a nutritional fortifier in food. Cereal-based fermented products are becoming popular worldwide. In this study, novel millet-based flavored yogurt enriched with SOD was developed. Lactiplantibacillus plantarum subsp. plantarum was screened, which manufactured SOD activity of 2476.21 ± 1.52 U g-1. The SOD content of millet yogurt was 19.827 ± 0.323 U mL-1, which was 63.01, 50.11, and 146.79% higher than that of Bright Dairy Yogurt 1911, Junlebao and Nanjing Weigang, respectively. Fifty-four volatile flavor substances and 22,571 non-volatile flavor substances were found in yogurt. Compared to traditional fermented yogurt, 37 non-volatile metabolites in yogurt with millet enzymatic fermentation broth were significantly upregulated, including 2-phenyl ethanol, hesperidin, N-acetylornithine and L-methionine, which were upregulated by 3169.6, 228.36, 271.22, and 55.67 times, respectively, thereby enriching the sensory and nutritional value of yogurt. Moreover, the manufacture of unpleasant volatile flavor substances was masked, making the product more compatible with consumers' tastes.

13.
BMC Plant Biol ; 19(1): 233, 2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31159738

ABSTRACT

BACKGROUND: Auxin conjugates are hydrolyzed to release free auxin to ensure defined cellular auxin levels or gradients within tissues for proper development or response to environmental signals. The auxin concentration in the abscission zone (AZ) is thought to play an important role in mediating the abscission lag phase. RESULTS: In this study, the full cDNA sequences of seven tomato ILR1-like SlILL genes were identified and characterized, All SlILLs were found to have auxin conjugate hydrolysis activity. The effects of different auxin conjugates on abscission identified IAA-Ile as a candidate to determine the auxin conjugate and auxin conjugate hydrolysis functions in abscission. Treatment of pedicel explants with IAA-Ile for different times showed that application before 6 h could effectively delay abscission. IAA-Ile pre-incubation for 2 h was sufficient to inhibit abscission. These results showed that there is not sufficient auxin conjugates in the AZ to inhibit abscission, and the optimal time to inhibit abscission by the application of exogenous auxin conjugates is before 6 h. Treatment with cycloheximide (CHX, a protein biosynthesis inhibitor) indicated that de novo synthesis of auxin conjugate hydrolases is also required to delay abscission. During abscission, SlILL1, 5, and 6 showed abscission-related gene expression patterns, and SlILL1, 3, 5, 6, and 7 showed increasing expression trends, which collectively might contribute to delay abscission. Silencing the expression of SlILL1, 3, 5, 6, and 7 using virus-induced gene silencing showed that SlILL1, 5, and 6 are major mediators of abscission in tomato. CONCLUSIONS: In the process of abscission, auxin inhibition is concentration dependent, and the concentration of auxin in the AZ was regulated by hydrolyzed auxin conjugates. SlILR1, 5, and 6 play a key role in flower pedicel abscission.


Subject(s)
Flowers/growth & development , Gene Expression Regulation, Plant , Hydrolases/metabolism , Indoleacetic Acids/metabolism , Protein Synthesis Inhibitors/pharmacology , Solanum lycopersicum/genetics , Cycloheximide/pharmacology , Flowers/genetics , Solanum lycopersicum/enzymology
14.
J Exp Bot ; 69(5): 1011-1025, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29365162

ABSTRACT

Ethylene perception is regulated by receptors, and the downstream protein CONSTITUTIVE TRIPLE RESPONSE1 is a key suppressor of ethylene signalling. The non-conserved tomato (Solanum lycopersicum) microRNA1917 (Sly-miR1917) mediates degradation of SlCTR4 splice variants (SlCTR4sv) but the molecular details of this pathway remain unknown. Sly-miR1917 and the targeted SlCTR4sv are ubiquitously expressed in all tomato organs. Overexpression of Sly-miR1917 enhances ethylene responses, including the triple response in etiolated seedlings, in the absence of ethylene, as well as epinastic petiole growth, accelerated pedicel abscission, and fruit ripening. Enhanced ethylene signalling in Sly-miR1917-overexpressing plants (1917-OE) is accompanied by up-regulation of ethylene biosynthesis and signalling genes, and increased ethylene emission. These phenotypes were recovered by repressing the positive ethylene regulator EIN2. Moreover, the Sly-miR1917-targeted SlCTR4 splice variant SlCTR4sv3, expressed specifically in the abscission zone, exhibited the opposite expression pattern to Sly-miR1917. Complementation of the Arabidopsis thaliana ctr-1 mutant and yeast two-hybrid and bimolecular fluorescence complementation assays suggested that SlCTR4sv3 functions in ethylene signalling. Co-expression of Sly-miR1917 and SlCTR4sv3 in Nicotiana benthamiana further suggested that Sly-miR1917 cleaves SlCTR4sv3 in vivo. Database homology searching revealed a Solanum tuberosum CTR-like splice variant containing a Sly-miR1917 binding sequence, and a homologue of mature Sly-miR1917 in potato, indicating a conserved function for miR1917 and the regulatory miRNA-mediated ethylene network in solanaceous species.


Subject(s)
Ethylenes/metabolism , Gene Expression Regulation, Plant , MicroRNAs/genetics , Protein Kinases/genetics , Solanum lycopersicum/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Solanum lycopersicum/metabolism , MicroRNAs/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Kinases/metabolism , RNA Splicing , RNA, Plant/genetics , RNA, Plant/metabolism
15.
Sci Rep ; 7(1): 14919, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29097804

ABSTRACT

Solanum lycopersicum PIN-FORMED1 (SlPIN1), a major auxin efflux facilitator, contributes to the establishment of auxin maxima during organ initiation and development in tomato. However, the functions of SlPIN1 during organ abscission remain unclear. In our study, SlPIN1 expression decreased immediately after flower removal and increased following IAA treatment, indicating a high sensitivity to auxin depletion. 1-MCP (an ethylene inhibitor) delayed abscission and down-regulated SlPIN1, indicating that ethylene may positively regulate SlPIN1 and that low expression levels of SlPIN1 may delay abscission. The SlPIN1 protein levels were not consistent with the expression pattern, implying that in addition to transcription, protein degradation also affects SlPIN1 levels during abscission. The phosphorylation of SlPIN1 at Ser418, which significantly declined during abscission, was found to play roles in SlPIN1 localization and auxin transport. We also identified the interaction proteins of SlPIN1, which were involved in phosphorylation and ubiquitylation. Therefore, complex mechanisms mediate SlPIN1 auxin transport capability during abscission. The silencing of SlPIN1 expression accelerated abscission by increasing auxin accumulation in the ovary and decreasing the auxin content in the abscission zone (AZ), indicating that SlPIN1 plays a major role in mediating auxin source-sink transport and the establishment and maintenance of auxin maxima in the AZ.


Subject(s)
Flowers/physiology , Indoleacetic Acids/metabolism , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Biological Transport , Ethylenes/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics
16.
Sci Rep ; 6: 33728, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27645097

ABSTRACT

SlARF2a is expressed in most plant organs, including roots, leaves, flowers and fruits. A detailed expression study revealed that SlARF2a is mainly expressed in the leaf nodes and cross-sections of the nodes indicated that SlARF2a expression is restricted to vascular organs. Decapitation or the application of 6-benzylaminopurine (BAP) can initially promote axillary shoots, during which SlARF2a expression is significantly reduced. Down-regulation of SlARF2a expression results in an increased frequency of dicotyledons and significantly increased lateral organ development. Stem anatomy studies have revealed significantly altered cambia and phloem in tomato plants expressing down-regulated levels of ARF2a, which is associated with obvious alterations in auxin distribution. Further analysis has revealed that altered auxin transport may occur via altered pin expression. To identify the interactions of AUX/IAA and TPL with ARF2a, four axillary shoot development repressors that are down-regulated during axillary shoot development, IAA3, IAA9, SlTPL1 and SlTPL6, were tested for their direct interactions with ARF2a. Although none of these repressors are directly involved in ARF2a activity, similar expression patterns of IAA3, IAA9 and ARF2a implied they might work tightly in axillary shoot formation and other developmental processes.


Subject(s)
Benzyl Compounds/pharmacology , Cambium/metabolism , Gene Expression Regulation, Plant/drug effects , Phloem/metabolism , Plant Proteins/biosynthesis , Purines/pharmacology , Solanum lycopersicum/metabolism , Cambium/genetics , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Phloem/genetics , Plant Proteins/genetics
17.
Plant Mol Biol ; 92(3): 313-36, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27542006

ABSTRACT

Solanum lycopersicum auxin response factor 10 (SlARF10) is post-transcriptionally regulated by Sl-miR160. Overexpression of a Sl-miR160-resistant SlARF10 (mSlARF10) resulted in narrower leaflet blades with larger stomata but lower densities. 35S:mSlARF10-6 plants with narrower excised leaves had greater water loss, which was in contrast to the wild type (WT). Further analysis revealed that the actual water loss was not consistent with the calculated stomatal water loss in 35S:mSlARF10-6 and the WT under the dehydration treatment, indicating that there is a difference in hydraulic conductance. Pretreatment with abscisic acid (ABA) and HgCl2 confirmed higher hydraulic conductance in 35S:mSlARF10, which is related to the larger stomatal size and higher activity of aquaporins (AQPs). Under ABA treatment, 35S:mSlARF10-6 showed greater sensitivity, and the stomata closed rapidly. Screening by RNA sequencing revealed that five AQP-related genes, fourteen ABA biosynthesis/signal genes and three stomatal development genes were significantly altered in 35S:mSlARF10-6 plants, and this result was verified by qRT-PCR. The promoter analysis showed that upregulated AQPs contain AuxRE and ABRE, implying that these elements may be responsible for the high expression levels of AQPs in 35S:mSlARF10-6. The three most upregulated AQPs (SlTIP1-1-like, SlPIP2;4 and SlNIP-type-like) were chosen to confirm AuxRE and ABRE function. Promoters transient expression demonstrated that the SlPIP2;4 and SlNIP-type-like AuxREs and SlPIP2;4 and SlTIP1-1-like ABREs could significantly enhance the expression of the GUS reporter in 35S:mSlARF10-6, confirming that AuxRE and ABRE may be the main factors inducing the expression of AQPs. Additionally, two upregulated transcription factors in 35S:mSlARF10-6, SlARF10 and SlABI5-like were shown to directly bind to those elements in an electromobility shift assay and a yeast one-hybrid assay. Furthermore, transient expression of down-regulated ARF10 or up-regulated ABI5 in tomato leaves demonstrated that ARF10 is the direct factor for inducing the water loss in 35S:mSlARF10-6. Here, we show that although SlARF10 increased the ABA synthesis/signal response by regulating stomatal aperture to mitigate water loss, SlARF10 also influenced stomatal development and AQP expression to affect water transport, and both act cooperatively to control the loss of leaf water in tomato. Therefore, this study uncovers a previously unrecognized leaf water loss regulatory factor and a network for coordinating auxin and ABA signalling in this important process. In an evolutionary context, miR160 regulates ARF10 to maintain the water balance in the leaf, thus ensuring normal plant development and environmental adaptation.


Subject(s)
Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant/drug effects , Solanum lycopersicum/drug effects , Mercuric Chloride/pharmacology , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Stomata/drug effects , Plant Stomata/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...