Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
2.
Nat Commun ; 15(1): 2638, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528060

ABSTRACT

Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.


Subject(s)
Protein Biosynthesis , Ribosomes , Models, Molecular , Ribosomes/metabolism , Protein Folding , Protein Processing, Post-Translational
3.
Microorganisms ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985311

ABSTRACT

Translation regulation and localized translation are essential for protein synthesis, controlling all aspects of cellular function in health and disease [...].

4.
Methods Mol Biol ; 2477: 179-193, 2022.
Article in English | MEDLINE | ID: mdl-35524118

ABSTRACT

Selective Ribosome Profiling (SeRP) is an emerging methodology, developed to capture cotranslational interactions in vivo. To date, SeRP is the only method that can directly capture, in near-codon resolution, ribosomes in action. Thus, SeRP allows us to study the mechanisms of protein synthesis and the network of protein-protein interactions that are formed already during synthesis. Here we report, in detail, the protocol for purification of ribosome- and Nascent-Chain associated factors, followed by isolation of ribosome-protected mRNA footprints, cDNA library generation and subsequent data analysis.


Subject(s)
Protein Biosynthesis , Ribosomes , Codon/metabolism , Gene Library , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism
5.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911752

ABSTRACT

The presence of a single cluster of nonoptimal codons was found to decrease a transcript's half-life through the interaction of the ribosome-associated quality control machinery with stalled ribosomes in Saccharomyces cerevisiae The impact of multiple nonoptimal codon clusters on a transcript's half-life, however, is unknown. Using a kinetic model, we predict that inserting a second nonoptimal cluster near the 5' end can lead to synergistic effects that increase a messenger RNA's (mRNA's) half-life in S. cerevisiae Specifically, the 5' end cluster suppresses the formation of ribosome queues, reducing the interaction of ribosome-associated quality control factors with stalled ribosomes. We experimentally validate this prediction by introducing two nonoptimal clusters into three different genes and find that their mRNA half-life increases up to fourfold. The model also predicts that in the presence of two clusters, the cluster closest to the 5' end is the primary determinant of mRNA half-life. These results suggest the "translational ramp," in which nonoptimal codons are located near the start codon and increase translational efficiency, may have the additional biological benefit of allowing downstream slow-codon clusters to be present without decreasing mRNA half-life. These results indicate that codon usage bias plays a more nuanced role in controlling cellular protein levels than previously thought.


Subject(s)
Protein Biosynthesis , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Fungal Proteins/biosynthesis , Half-Life , Models, Genetic
6.
J Vis Exp ; (176)2021 10 07.
Article in English | MEDLINE | ID: mdl-34694292

ABSTRACT

In recent years, it has become evident that ribosomes not only decode our mRNA but also guide the emergence of the polypeptide chain into the crowded cellular environment. Ribosomes provide the platform for spatially and kinetically controlled binding of membrane-targeting factors, modifying enzymes, and folding chaperones. Even the assembly into high-order oligomeric complexes, as well as protein-protein network formation steps, were recently discovered to be coordinated with synthesis. Here, we describe Selective Ribosome Profiling, a method developed to capture co-translational interactions in vivo. We will detail the various affinity purification steps required for capturing ribosome-nascent-chain complexes together with co-translational interactors, as well as the mRNA extraction, size exclusion, reverse transcription, deep-sequencing, and big-data analysis steps, required to decipher co-translational interactions in near-codon resolution.


Subject(s)
Protein Biosynthesis , Ribosomes , Molecular Chaperones/metabolism , Protein Folding , Protein Processing, Post-Translational , Proteomics , Ribosomes/genetics , Ribosomes/metabolism
7.
Annu Rev Biochem ; 88: 337-364, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30508494

ABSTRACT

The timely production of functional proteins is of critical importance for the biological activity of cells. To reach the functional state, newly synthesized polypeptides have to become enzymatically processed, folded, and assembled into oligomeric complexes and, for noncytosolic proteins, translocated across membranes. Key activities of these processes occur cotranslationally, assisted by a network of machineries that transiently engage nascent polypeptides at distinct phases of translation. The sequence of events is tuned by intrinsic features of the nascent polypeptides and timely association of factors with the translating ribosome. Considering the dynamics of translation, the heterogeneity of cellular proteins, and the diversity of interaction partners, it is a major cellular achievement that these processes are temporally and spatially so precisely coordinated, minimizing the generation of damaged proteins. This review summarizes the current progress we have made toward a comprehensive understanding of the cotranslational interactions of nascent chains, which pave the way to their functional state.


Subject(s)
Molecular Chaperones/metabolism , Protein Biosynthesis , Protein Folding , Ribosomes/metabolism , Bacteria/genetics , Bacteria/metabolism , Eukaryota/genetics , Eukaryota/metabolism
8.
Nature ; 561(7722): 268-272, 2018 09.
Article in English | MEDLINE | ID: mdl-30158700

ABSTRACT

The folding of newly synthesized proteins to the native state is a major challenge within the crowded cellular environment, as non-productive interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by coupling synthesis with polypeptide folding and by using molecular chaperones to safeguard folding cotranslationally2. However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of folding: the assembly of polypeptides into complexes. In prokaryotes, a proof-of-concept study showed that the assembly of heterodimeric luciferase is an organized cotranslational process that is facilitated by spatially confined translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental differences-such as the rarity of polycistronic mRNAs and different chaperone constellations-raise the question of whether assembly is also coordinated with translation. Here we provide a systematic and mechanistic analysis of the assembly of protein complexes in eukaryotes using ribosome profiling. We determined the in vivo interactions of the nascent subunits from twelve hetero-oligomeric protein complexes of Saccharomyces cerevisiae at near-residue resolution. We find nine complexes assemble cotranslationally; the three complexes that do not show cotranslational interactions are regulated by dedicated assembly chaperones5-7. Cotranslational assembly often occurs uni-directionally, with one fully synthesized subunit engaging its nascent partner subunit, thereby counteracting its propensity for aggregation. The onset of cotranslational subunit association coincides directly with the full exposure of the nascent interaction domain at the ribosomal tunnel exit. The action of the ribosome-associated Hsp70 chaperone Ssb8 is coordinated with assembly. Ssb transiently engages partially synthesized interaction domains and then dissociates before the onset of partner subunit association, presumably to prevent premature assembly interactions. Our study shows that cotranslational subunit association is a prevalent mechanism for the assembly of hetero-oligomers in yeast and indicates that translation, folding and the assembly of protein complexes are integrated processes in eukaryotes.


Subject(s)
Amino Acyl-tRNA Synthetases/biosynthesis , Fatty Acid Synthases/biosynthesis , Multiprotein Complexes/biosynthesis , Multiprotein Complexes/chemistry , Protein Biosynthesis , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/genetics , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Fatty Acid Synthases/metabolism , HSP70 Heat-Shock Proteins/metabolism , Models, Molecular , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , Protein Subunits/biosynthesis , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
9.
Prion ; 8(3): 276-84, 2014.
Article in English | MEDLINE | ID: mdl-25482598

ABSTRACT

The sequestration of misfolded proteins into aggregates is an integral pathway of the protein quality control network that becomes particularly prominent during proteotoxic stress and in various pathologies. Methods for systematic analysis of cellular aggregate content are still largely limited to fluorescence microscopy and to separation by biochemical techniques. Here, we describe an alternative approach, using flow cytometric analysis, applied to protein aggregates released from their intracellular milieu by mild lysis of yeast cells. Protein aggregates were induced in yeast by heat shock or by chaperone deprivation and labeled using GFP- or mCherry-tagged quality control substrate proteins and chaperones. The fluorescence-labeled aggregate particles were distinguishable from cell debris by flow cytometry. The assay was used to quantify the number of fluorescent aggregates per µg of cell lysate protein and for monitoring changes in the cellular content and properties of aggregates, induced by stress. The results were normalized to the frequencies of fluorescent reporter expression in the cell population, allowing quantitative comparison. The assay also provided a quantitative measure of co-localization of aggregate components, such as chaperones and quality control substrates, within the same aggregate particle. This approach may be extended by fluorescence-activated sorting and isolation of various protein aggregates, including those harboring proteins associated with conformation disorders.


Subject(s)
Flow Cytometry/methods , Fungal Proteins/analysis , Fungal Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/chemistry , Heat-Shock Proteins , Protein Aggregates , Saccharomyces cerevisiae/metabolism
10.
Biomolecules ; 4(3): 704-24, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25036888

ABSTRACT

Molecular chaperones were originally discovered as heat shock-induced proteins that facilitate proper folding of proteins with non-native conformations. While the function of chaperones in protein folding has been well documented over the last four decades, more recent studies have shown that chaperones are also necessary for the clearance of terminally misfolded proteins by the Ub-proteasome system. In this capacity, chaperones protect misfolded degradation substrates from spontaneous aggregation, facilitate their recognition by the Ub ligation machinery and finally shuttle the ubiquitylated substrates to the proteasome. The physiological importance of these functions is manifested by inefficient proteasomal degradation and the accumulation of protein aggregates during ageing or in certain neurodegenerative diseases, when chaperone levels decline. In this review, we focus on the diverse roles of stress-induced chaperones in targeting misfolded proteins to the proteasome and the consequences of their compromised activity. We further discuss the implications of these findings to the identification of new therapeutic targets for the treatment of amyloid diseases.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteostasis Deficiencies/metabolism , Animals , HSP40 Heat-Shock Proteins/metabolism , Humans , Ubiquitin/metabolism
11.
Mol Biol Cell ; 24(13): 2076-87, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23637465

ABSTRACT

Ubiquitin accumulation in amyloid plaques is a pathological marker observed in the vast majority of neurodegenerative diseases, yet ubiquitin function in these inclusions is controversial. It has been suggested that ubiquitylated proteins are directed to inclusion bodies under stress conditions, when both chaperone-mediated refolding and proteasomal degradation are compromised or overwhelmed. Alternatively, ubiquitin and chaperones may be recruited to preformed inclusions to promote their elimination. We address this issue using a yeast model system, based on expression of several mildly misfolded degradation substrates in cells with altered chaperone content. We find that the heat shock protein 70 (Hsp70) chaperone pair Ssa1/Ssa2 and the Hsp40 cochaperone Sis1 are essential for degradation. Substrate ubiquitylation is strictly dependent on Sis1, whereas Ssa1 and Ssa2 are dispensable. Remarkably, in Ssa1/Ssa2-depleted cells, ubiquitylated substrates are sequestered into detergent-insoluble, Hsp42-positive inclusion bodies. Unexpectedly, sequestration is abolished by preventing substrate ubiquitylation. We conclude that Hsp40 is required for the targeting of misfolded proteins to the ubiquitylation machinery, whereas the decision to degrade or sequester ubiquitylated proteins is mediated by the Hsp70s. Accordingly, diminished Hsp70 levels, as observed in aging or certain pathological conditions, might be sufficient to trigger ubiquitin-dependent sequestration of partially misfolded proteins into inclusion bodies.


Subject(s)
Adenosine Triphosphatases/genetics , Gene Expression Regulation, Fungal , HSP40 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Proteasome Endopeptidase Complex/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Ubiquitin/genetics , Adenosine Triphosphatases/metabolism , Cytoplasm/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Inclusion Bodies/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Protein Folding , Protein Stability , Proteolysis , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/metabolism
12.
Mol Biol Cell ; 22(24): 4726-39, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21998200

ABSTRACT

Proper functioning of the protein-folding quality control network depends on the network's ability to discern diverse structural perturbations to the native states of its protein substrates. Despite the centrality of the detection of misfolded states to cell home-ostasis, very little is known about the exact sequence and structural features that mark a protein as being misfolded. To investigate these features, we studied the requirements for the degradation of the yeast kinetochore protein Ndc10p. Mutant Ndc10p is a substrate of a protein-folding quality control pathway mediated by the E3 ubiquitin (Ub) ligase Doa10p at the endoplasmic reticulum (ER)/nuclear envelope membrane. Analysis of Ndc10p mutant derivatives, employing a reverse genetics approach, identified an autonomous quality control-associated degradation motif near the C-terminus of the protein. This motif is composed of two indispensable hydrophobic elements: a hydrophobic surface of an amphipathic helix and a loosely structured hydrophobic C-terminal tail. Site-specific point mutations expose these elements, triggering ubiquitin-mediated and HSP70 chaperone-dependent degradation of Ndc10p. These findings substantiate the ability of the ER quality control system to recognize subtle perturbation(s) in the native structure of a nuclear protein.


Subject(s)
DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/metabolism , Kinetochores/metabolism , Nuclear Envelope/metabolism , Protein Folding , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Motifs , DNA-Binding Proteins/genetics , Endoplasmic Reticulum/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Hydrophobic and Hydrophilic Interactions , Mutation , Nuclear Envelope/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL