Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1397288, 2024.
Article in English | MEDLINE | ID: mdl-38962307

ABSTRACT

Background: As drug-metabolizing enzyme activities are affected by a variety of factors, such as drug-drug interactions, a method to evaluate drug-metabolizing enzyme activities in real time is needed. In this study, we developed a novel SPECT imaging probe for evaluation of hepatic CYP2D activity. Methods: Iodine-123- and 125-labeled 4-iodobenzylmequitazine (123/125I-BMQ) was synthesized with high labeling and purity. CYP isozymes involved in the metabolism of 125I-BMQ in mouse liver microsomes were evaluated, and the utility of 123/125I-was assessed from biological distribution and SPECT imaging evaluation in normal and CYP2D-inhibited mice. Results: In vitro metabolite analysis using mouse liver microsomes showed that 125I-BMQ is specifically metabolized by CYP2D. Biological distribution and SPECT imaging of 123/125I-BMQ in normal mice showed that injection 123/125I-BMQ accumulated early in the liver and was excreted into the gallbladder and intestines. In CYP2D-inhibited mice, accumulation in the liver was increased, but accumulation in the gallbladder and intestines, the excretory organ, was delayed. Since only metabolites of 125I-BMQ are detected in bile, visualization and measuring of the accumulation of metabolites over time in the intestine, where bile is excreted, could predict the amount of metabolites produced in the body and evaluate CYP2D activity, which would be useful in determining the dosage of various drugs metabolized by CYP2D. Conclusion: 123/125I-BMQ is useful as a SPECT imaging probe for comprehensive and direct assessment of hepatic CYP2D activity in a minimally invasive and simple approach.

2.
Radiat Res ; 200(1): 21-31, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37212749

ABSTRACT

This study conducted fundamental research to develop a more effective BNCT targeting cancer stem cells. We constructed plasmids that induced the overexpression of L-type amino acid transporter 1 (LAT1) tagged with tdTomato on the cytoplasmic membranes of CD133 expressing cancer cells. After transfection of the plasmids into a glioblastoma cell line (T98G), several clones overexpressing LAT1-tdTomato in the hypoxic microenvironment of the spheroids formed from each clone were obtained. Confocal laser microscopic observation confirmed that signals from LAT1-tdTomato overlapped with immunofluorescence signals from the second antibody binding to CD133 in the hypoxic microenvironment of the spheroids. As CD133-positive cells in the hypoxic microenvironment of T98G spheroids have cancer stem cell characteristics, LAT1 seems to be selectively overexpressed in cancer stem cell-like cells. An RI tracer method showed that cells overexpressing LAT1-tdTomato in the hypoxic microenvironment of spheroids incorporate 14C-BPA much more than cells that do not overexpress LAT1-tdTomato. Neutron radiation experiments showed a more significant regression in spheroids formed with clones than in spheroids formed with parental cells when spheroids were treated with 10BPA. These results suggest that BNCT combined with gene therapy targeting cancer stem cells is more effective in glioblastoma therapy.


Subject(s)
Boron Neutron Capture Therapy , Glioblastoma , Humans , Glioblastoma/radiotherapy , Cell Line, Tumor , Boron Neutron Capture Therapy/methods , Large Neutral Amino Acid-Transporter 1/genetics , Large Neutral Amino Acid-Transporter 1/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36902204

ABSTRACT

The World Health Organization has cautioned that antimicrobial resistance (AMR) will be responsible for an estimated 10 million deaths annually by 2050. To facilitate prompt and accurate diagnosis and treatment of infectious disease, we investigated the potential of amino acids for use as indicators of bacterial growth activity by clarifying which amino acids are taken up by bacteria during the various growth phases. In addition, we examined the amino acid transport mechanisms that are employed by bacteria based on the accumulation of labeled amino acids, Na+ dependence, and inhibitory effects using a specific inhibitor of system A. We found that 3H-L-Ala accurately reflects the proliferative activity of Escherichia coli K-12 and pathogenic EC-14 in vitro. This accumulation in E. coli could be attributed to the amino acid transport systems being different from those found in human tumor cells. Moreover, biological distribution assessed in infection model mice with EC-14 using 3H-L-Ala showed that the ratio of 3H-L-Ala accumulated in infected muscle to that in control muscle was 1.20. By detecting the growth activity of bacteria in the body that occurs during the early stages of infection by nuclear imaging, such detection methods may result in expeditious diagnostic treatments for infectious diseases.


Subject(s)
Bacterial Infections , Escherichia coli K12 , Animals , Mice , Humans , Escherichia coli/metabolism , Escherichia coli K12/metabolism , Bacteria , Amino Acids/metabolism , Alanine/metabolism
4.
Int J Mol Sci ; 23(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36232758

ABSTRACT

Drug metabolizing enzyme activity is affected by various factors such as drug-drug interactions, and a method to quantify drug metabolizing enzyme activity in real time is needed. In this study, we developed a novel radiopharmaceutical for quantitative imaging to estimate hepatic CYP3A4 and CYP2D6 activity. Iodine-123- and 125-labeled O-desmethylvenlafaxine (123/125I-ODV) was obtained with high labeling and purity, and its metabolism was found to strongly involve CYP3A4 and CYP2D6. SPECT imaging in normal mice showed that the administered 123I-ODV accumulated early in the liver and was excreted into the gallbladder, as evaluated by time activity curves. In its biological distribution, 125I-ODV administered to mice accumulated early in the liver, and only the metabolite of 125I-ODV was quickly excreted into the bile. In CYP3A4- and CYP2D6-inhibited model mice, the accumulation in bile decreased more than in normal mice, indicating inhibition of metabolite production. These results indicated that imaging and quantifying the accumulation of radioactive metabolites in excretory organs will aid in determining the dosages of various drugs metabolized by CYP3A4 and CYP2D6 for individualized medicine. Thus, 123/125I-ODV has the potential to direct, comprehensive detection and measurement of hepatic CYP3A4 and CYP2D6 activity by a simple and less invasive approach.


Subject(s)
Cytochrome P-450 CYP2D6 , Cytochrome P-450 CYP3A , Iodine Radioisotopes , Liver , Animals , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A/metabolism , Desvenlafaxine Succinate , Iodine Radioisotopes/pharmacology , Liver/drug effects , Liver/metabolism , Mice , Radiopharmaceuticals/pharmacology , Venlafaxine Hydrochloride
5.
Pharmaceutics ; 14(5)2022 May 07.
Article in English | MEDLINE | ID: mdl-35631596

ABSTRACT

In this study, we evaluated the use of 15-(4-123I-iodophenyl)-3(R,S)-methylpentadecanoic acid (123I-BMIPP) to visualize fatty acid metabolism in bacteria for bacterial infection imaging. We found that 123I-BMIPP, which is used for fatty acid metabolism scintigraphy in Japan, accumulated markedly in Escherichia coli EC-14 similar to 18F-FDG, which has previously been studied for bacterial imaging. To elucidate the underlying mechanism, we evaluated changes in 123I-BMIPP accumulation under low-temperature conditions and in the presence of a CD36 inhibitor. The uptake of 123I-BMIPP by EC-14 was mediated via the CD36-like fatty-acid-transporting membrane protein and accumulated by fatty acid metabolism. In model mice infected with EC-14, the biological distribution and whole-body imaging were assessed using 123I-BMIPP and 18F-FDG. The 123I-BMIPP biodistribution study showed that, 8 h after infection, the ratio of 123I-BMIPP accumulated in infected muscle to that in control muscle was 1.31 at 60 min after 123I-BMIPP injection. In whole-body imaging 1.5 h after 123I-BMIPP administration and 9.5 h after infection, infected muscle exhibited a 1.33-times higher contrast than non-infected muscle. Thus, 123I-BMIPP shows potential for visualizing fatty acid metabolism of bacteria for imaging bacterial infections.

6.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269610

ABSTRACT

The effectiveness of L- and D-amino acids for detecting the early stage of infection in bacterial imaging was compared. We evaluated the accumulation of 3H-L-methionine (Met), 3H-D-Met, 3H-L-alanine (Ala), and 3H-D-Ala in E. coli EC-14 and HaCaT cells. Biological distribution was assessed in control and lung-infection-model mice with EC-14 using 3H-L- and D-Met, and 18F-FDG. A maximum accumulation of 3H-L- and D-Met, and 3H-L- and D-Ala occurred in the growth phase of EC-14 in vitro. The accumulation of 3H-L-Met and L-Ala was greater than that of 3H-D-Met and D-Ala in both EC-14 and HaCaT cells. For all radiotracers, the accumulation was greater in EC-14 than in HaCaT cells at early time points. The accumulation was identified at 5 min after injection in EC-14, whereas the accumulation gradually increased in HaCaT cells over time. There was little difference in biodistribution between 3H-L-and D-Met except in the brain. 3H-L- and D-Met were sensitive for detecting areas of infection after the spread of bacteria throughout the body, whereas 18F-FDG mainly detected primary infection areas. Therefore, 11C-L- and D-Met, radioisotopes that differ only in terms of 3H labeling, could be superior to 18F-FDG for detecting bacterial infection in lung-infection-model mice.


Subject(s)
Amino Acids , Fluorodeoxyglucose F18 , Animals , Disease Models, Animal , Escherichia coli/metabolism , Lung/diagnostic imaging , Lung/metabolism , Methionine/metabolism , Mice , Positron-Emission Tomography , Radiopharmaceuticals , Tissue Distribution
7.
Nucl Med Biol ; 94-95: 92-97, 2021.
Article in English | MEDLINE | ID: mdl-33609918

ABSTRACT

INTRODUCTION: We clarified the renal uptake and urinary secretion mechanism of [99mTc]dimercaptosuccinic acid ([99mTc]DMSA) via drug transporters in renal proximal tubules. METHODS: [99mTc]DMSA was added to human embryonic kidney 293 cells expressing human multidrug and toxin extrusion (MATE)1 and MATE2-K, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)2; to Flp293 cells expressing human organic anion transporter (OAT)1 and OAT3; and to vesicles expressing P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)2, MRP4, or breast cancer resistance protein with and without probenecid (OAT inhibitor for both OATs and MRPs). Time activity curves of [99mTc]DMSA with and without probenecid were established using LLC-PK1 cells. Biodistribution and single photon emission computed tomography (SPECT) imaging in mice were conducted using [99mTc]DMSA with and without probenecid. RESULTS: [99mTc]DMSA uptake was significantly higher in Flp293/OAT3 than in mock cells. Uptake via OAT3 was inhibited by probenecid. [99mTc]DMSA uptake into vesicles that highly expressed MRP2 was significantly higher in adenosine triphosphate (ATP) than in adenosine monophosphate (AMP), and probenecid decreased uptake to similar levels as that in AMP. In the time activity curves for [99mTc]DMSA in LLC-PK1 cells, probenecid loading inhibited accumulation from the basolateral side into LLC-PK1 cells, whereas accumulation from the apical side into cells gradually increased. Transport of [99mTc]DMSA from both sides was low. Biodistribution and SPECT imaging studies showed that [99mTc]DMSA with probenecid loading resulted in significantly higher accumulation in blood, heart, liver, and bladder after [99mTc]DMSA injection compared with control mice. Probenecid induced significantly lower accumulation in the kidney after [99mTc]DMSA injection. CONCLUSIONS: [99mTc]DMSA accumulates in renal proximal tubular epithelial cells from blood via OAT3 on the basolateral side, and then a small volume of [99mTc]DMSA will be excreted in urine via MRP2. ADVANCES IN KNOWLEDGE: [99mTc]DMSA accumulates via OAT3 in renal proximal tubular epithelial cells and is slightly excreted from the cells via MRP2. IMPLICATIONS FOR PATIENT CARE: [99mTc]DMSA may be useful for measuring renal transport function with OAT3 in patients.


Subject(s)
Organic Anion Transporters, Sodium-Independent/metabolism , Technetium Tc 99m Dimercaptosuccinic Acid/metabolism , Technetium Tc 99m Dimercaptosuccinic Acid/urine , Biological Transport , Cell Line , Multidrug Resistance-Associated Protein 2 , Technetium Tc 99m Dimercaptosuccinic Acid/pharmacokinetics , Tissue Distribution
8.
Pharmaceutics ; 14(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35056957

ABSTRACT

Gastrointestinal tract absorption of cationic anticancer drugs and medicines was estimated using whole-body imaging following oral [123I]MIBG administration. [123I]MIBG was added to cultures of human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)2B1, carnitine/organic cation transporter (OCTN)1 and OCTN2, and organic cation transporter (OCT)1, OCT2, and OCT3 with and without cimetidine (an OCTN and OCT inhibitor) and L-carnitine (an OCTN inhibitor). Biodistribution analyses and single-photon emission computed tomography (SPECT) imaging in normal and dextran sodium sulfate (DSS)-induced experimental colitis mice were conducted using [123I]MIBG with and without cimetidine. [123I]MIBG uptake was significantly higher in HEK293/OCTN1, 2, and OCT1-3 cells than in mock cells. Uptake via OCTN was inhibited by L-carnitine, whereas OCT-mediated uptake was inhibited by cimetidine. Biodistribution analyses and SPECT imaging studies showed significantly lower accumulation of [123I]MIBG in the blood, heart, liver, and bladder in DSS-induced experimental colitis mice and mice with cimetidine loading compared with normal mice, whereas significantly higher accumulation in the stomach and kidney was observed after [123I]MIBG injection. [123I]MIBG imaging after oral administration can be used to estimate gastrointestinal absorption in the small intestine via OCTN and/or OCT by measuring radioactivity in the heart, liver, and bladder.

9.
Nucl Med Biol ; 90-91: 49-54, 2020.
Article in English | MEDLINE | ID: mdl-33032192

ABSTRACT

INTRODUCTION: 131I-labeled m-iodobenzylguanidine ([131I]MIBG) has been used to treat neuroblastoma patients, but [131I]MIBG may be immediately excreted from the cancer cells by the adenosine triphosphate binding cassette transporters, similar to anticancer drugs. The purpose of this study was to clarify the efflux mechanism of [131I]MIBG in neuroblastomas and improve accumulation by inhibition of the transporter in neuroblastomas. METHODS: [131I]MIBG was incubated in human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic anion transporter (OAT)1 and OAT2, organic cation transporter (OCT)1 and OCT2, and sodium taurocholate cotransporting polypeptide, and in vesicles expressing P-glycoprotein (MDR1), multidrug resistance associated protein (MRP)1-4, or breast cancer resistance protein with and without MK-571 and probenecid (MRP inhibitors). Time activity curves of [131I]MIBG with and without MK-571 and probenecid were established using an SK-N-SH neuroblastoma cell line, and transporter expression of multiple drug resistance was measured. Biodistribution and SPECT imaging examinations were conducted using [123I]MIBG with and without probenecid in SK-N-SH-bearing mice. RESULTS: [131I]MIBG uptake was significantly higher in OAT1, OAT2, OCT1, and OCT2 than in mock cells. Uptake via OCT1 and OCT2 was little inhibited by MK-571 and probenecid. [131I]MIBG uptake into vesicles that highly expressed MRP1 or MRP4 was significantly higher in ATP than in AMP, and these inhibitors restored uptake to levels similar to that in AMP. Examining the time activity curves for [131I]MIBG in SK-N-SH cells, higher expressions of MDR1, MRP1, MRP4, and MK-571, or probenecid loading produced significantly higher uptake than in control at most incubation times. The ratios of tumors to blood or muscle in SK-N-SH-bearing mice were significantly increased by probenecid loading in comparison with normal mice. CONCLUSIONS: [131I]MIBG exports via MRP1 and MRP4 in neuroblastoma. The accumulation and tumor-to-blood or muscle ratios of [131I]MIBG are improved by inhibition of MRPs with probenecid in neuroblastoma. ADVANCES IN KNOWLEDGE: [131I]MIBG, widely used for treatment of neuroendocrine tumors including neuroblastoma, is excreted via MRP1 and MRP4 in neuroblastoma. IMPLICATIONS FOR PATIENT CARE: Loading with probenecid, OAT, and MRP inhibitors improves [131I]MIBG accumulation.


Subject(s)
3-Iodobenzylguanidine/metabolism , Multidrug Resistance-Associated Proteins/metabolism , Neuroblastoma/pathology , Animals , Biological Transport , Cell Line, Tumor , HEK293 Cells , Humans , Mice , Tissue Distribution
10.
Nucl Med Biol ; 84-85: 33-37, 2020.
Article in English | MEDLINE | ID: mdl-31986465

ABSTRACT

Technetium-99m-labeled mercaptoacetyltriglycine ([99mTc]MAG3) is widely used for evaluation of transplanted kidneys, diagnosis of tubular necrosis, and scintigraphic studies of tubular function. [99mTc]MAG3 is a substrate for organic anion transporter (OAT)1 and OAT3 on the basolateral membrane side for renal secretion. We investigated the transport mechanism and affinity of [99mTc]MAG3 on the apical membrane of renal proximal tubule cells for renal secretion. Adenosine triphosphate-binding cassette (ABC) transporters for renal secretion of [99mTc]MAG3 were examined using ABC transporter vesicles expressing multiple drug resistance 1 (MDR1), breast cancer resistance protein (BCRP), multidrug resistance-associated protein (MRP)2, and MRP4. MK-571, a MRP inhibitor, was applied to measure the Km and Vmax of MRP2 and MRP4 in a vesicle transport assay. Single photon emission computed tomography (SPECT) was performed in normal rats and MRP2-deficient Eisai hyperbilirubinuria rats (EHBR) using [99mTc]MAG3 with and without MK-571. [99mTc]MAG3 uptake in adenosine triphosphate was significantly higher than that in adenosine monophosphate in vesicles that highly expressed MRP2 and MRP4. The affinity of [99mTc]MAG3 for MRP4 was higher than that for MRP2. Renal secretion via MRP2 and MRP4 was identified by comparing normal and EHBR rats with and without MK-571 on SPECT. [99mTc]MAG3 is transported via MRP2 and MRP4 on the apical membrane of renal proximal tubule cells. The affinity of MRP4 is higher than that of MRP2. SIGNIFICANCE STATEMENT: [99mTc]MAG3, widely used for evaluation of transplanted kidneys, diagnosis of tubular necrosis, and scintigraphic studies of tubular function, is transported via MRP2 and MRP4 on the apical membrane of renal proximal tubule cells. The affinity of MRP4 is higher than that of MRP2.


Subject(s)
Cell Membrane/metabolism , Kidney Tubules, Proximal/cytology , Technetium Tc 99m Mertiatide/metabolism , Animals , Biological Transport , Kidney Tubules, Proximal/diagnostic imaging , Rats , Tomography, Emission-Computed, Single-Photon
11.
Nucl Med Commun ; 39(9): 825-833, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29877992

ABSTRACT

OBJECTIVES: Drugs are mainly metabolized by hepatic enzymes, the activity of which can differ between individuals. Although it is ideal to measure the hepatic clearance of liver-targeted drugs in individualized medicine, blood enzyme tests typically measure metabolic drug clearance in the entire body, and not just in the liver. We investigated whether I-iomazenil imaging can directly assess and quantify the activity of hepatic drug-metabolizing enzymes. MATERIALS AND METHODS: Hepatic enzymes that metabolize I-iomazenil were identified by thin-layer chromatography in mouse liver homogenates with bis(4-nitrophenyl) phosphate (BNPP) inhibitor for carboxylesterase enzymes and nicotinamide adenine dinucleotide phosphate (NADPH) generator for cytochrome P450 enzymes. Whole-body images of mice were acquired using I-iomazenil with and without BNPP, and the distribution was also obtained. The metabolism of I-iomazenil in the blood, liver, gall bladder, and bladder was investigated by thin-layer chromatography. RESULTS: From the in-vitro metabolism of I-iomazenil using BNPP, the enzyme converting I-iomazenil to I-R-COOH was identified as carboxylesterase, and that converting I-iomazenil to M2 was identified as cytochrome P450 in experiments with and without an NADPH generator. The biological distribution and whole-body imaging showed increased accumulation in the liver of mice administered BNPP compared with normal mice, but decreased levels in the gall bladder and small intestine. The main fraction in bile and urine was I-R-COOH, with two unknown metabolites (M1 and M2), I, and I-iomazenil also being present. CONCLUSION: I-iomazenil whole-body imaging has good possibility of direct measurement of hepatic carboxylesterase activity as accumulation of I-R-COOH in the gall bladder through bile and in the bladder through urine.


Subject(s)
Carboxylesterase/metabolism , Flumazenil/analogs & derivatives , Liver/enzymology , Whole Body Imaging , Animals , Flumazenil/metabolism , Liver/diagnostic imaging , Male , Mice , Nitrophenols/metabolism
12.
Cancer Sci ; 109(5): 1617-1626, 2018 May.
Article in English | MEDLINE | ID: mdl-29498142

ABSTRACT

In boron neutron capture therapy (BNCT), 10 B-4-borono-L-phenylalanine (BPA) is commonly used as a 10 B carrier. PET using 4-borono-2-18 F-fluoro-phenylalanine (18 F-FBPA PET) has been performed to estimate boron concentration and predict the therapeutic effects of BNCT; however, the association between tumor uptake of 18 F-FBPA and boron concentration in tumors remains unclear. The present study investigated the transport mechanism of 18 F-FBPA and BPA, and evaluated the utility of 18 F-FBPA PET in predicting boron concentration in tumors. The transporter assay revealed that 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid, an inhibitor of the L-type amino acid transporter, significantly inhibited 18 F-FBPA and 14 C-4-borono-L-phenylalanine (14 C-BPA) uptake in FaDu and LN-229 human cancer cells. 18 F-FBPA uptake strongly correlated with 14 C-BPA uptake in 7 human tumor cell lines (r = .93; P < .01). PET experiments demonstrated that tumor uptake of 18 F-FBPA was independent of the administration method, and uptake of 18 F-FBPA by bolus injection correlated well with BPA uptake by continuous intravenous infusion. The results of this study revealed that evaluating tumor uptake of 18 F-FBPA by PET was useful for estimating 10 B concentration in tumors.


Subject(s)
Boron Compounds/pharmacokinetics , Boron Neutron Capture Therapy/methods , Phenylalanine/analogs & derivatives , Positron-Emission Tomography/methods , Animals , Cell Line, Tumor , Female , Humans , Infusions, Intravenous , Mice , Mice, Inbred BALB C , Phenylalanine/pharmacokinetics , Tissue Distribution
13.
Nucl Med Biol ; 59: 16-21, 2018 04.
Article in English | MEDLINE | ID: mdl-29413752

ABSTRACT

INTRODUCTION: Due to its poor prognosis, specific imaging for early detection of malignant melanoma is strongly desired. Although radioiodine labeled 4-hydroxyphenylcysteamine, which we previously developed, has good affinity for tyrosinase, an enzyme in the melanin metabolic pathway, image contrast of the melanoma:organ ratios is not sufficiently high for detection of primary melanoma and metastases at early injection times. In this study, we developed radioiodine labeled acetaminophen (I-AP) for specific, high-contrast imaging of malignant melanoma. METHODS: Radioiodine-125-labeled AP (125I-AP) was prepared using the chloramine-T method under no carrier-added conditions. Accumulation of radioactivity and the mechanism were evaluated in vitro using B16 melanoma cells incubated with 125I-AP or 14C(U)-labeled AP (14C-AP) with and without l-tyrosine as a substrate of tyrosinase, phenylthiourea as an inhibitor of tyrosinase, and thymidine as an inhibitor of DNA polymerase. The biological distribution of radioactivity in B16 melanoma-bearing mice was evaluated to determine the accumulation of 125I-AP. The stability of 125I-AP over time was evaluated in mice. RESULTS: The labeling efficiency and radiochemical purity of 125I-AP were >80% and 95%, respectively. Accumulation of 125I-AP was higher than that of 14C-AP at 60 min of incubation in vitro. The affinity of 14C-AP for tyrosinase and DNA polymerase was higher than that of 125I-AP, whereas the Vmax of 125I-AP was higher than that of 14C-AP. 125I-AP showed the highest accumulation in the gall bladder, and clearance from the blood and kidney was rapid. Melanoma:muscle and melanoma:normal skin ratios of 125I-AP for imaging contrast were the highest at 15 min after injection, whereas the melanoma:blood and melanoma:bone ratios gradually increased over time. 125I-AP remained stable for 60 min after injection in mice. CONCLUSIONS: 125I-AP has affinity for tyrosinase and high image contrast at early time points after injection. Therefore, 123I-AP imaging has great potential for specific, high-contrast detection of malignant melanoma. ADVANCES IN KNOWLEDGE: 123I-AP will provide specific, high-contrast imaging for malignant melanoma at early injection times. IMPLICATIONS FOR PATIENT CARE: 123I-AP has good potential for the diagnosis of malignant melanoma compared with 123I-labeled 4-hydroxyphenylcysteamine, which we previously developed.


Subject(s)
Acetaminophen/chemistry , Iodine Radioisotopes , Melanoma, Experimental/diagnostic imaging , Molecular Imaging/methods , Acetaminophen/pharmacokinetics , Animals , Isotope Labeling , Male , Melanoma, Experimental/metabolism , Mice , Tissue Distribution
14.
Nucl Med Biol ; 49: 8-15, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28284101

ABSTRACT

INTRODUCTION: To clarify the difference between system A and L amino acid transport imaging in PET clinical imaging, we focused on the use of α-[N-methyl-11C]-methylaminoisobutyric acid ([11C]MeAIB), and compared it with [S-methyl-11C]-L-methionine ([11C]MET). The aim of this study was to assess the correlation of accumulation of these two radioactive amino acid analogs with expression of amino acid transporters and cell proliferative activity in carcinoma cells. METHODS: Amino acid uptake inhibitor studies were performed in four human carcinoma cells (epidermal carcinoma A431, colorectal carcinoma LS180, and lung carcinomas PC14/GL and H441/GL) using the radioisotope analogs [3H]MET and [14C]MeAIB. MeAIB was used to inhibit the A system and 2-amino-2-norbornane-carboxylic acid (BCH) was used to inhibit the L system. The carcinoma gene expression levels of a number of amino acid transporters were measured by microarray and quantitative polymerase chain reaction. Carcinoma proliferative activity was assessed using accumulation of [methyl-3H]-3'-deoxy-3'-fluorothymidine ([3H]FLT). RESULTS AND CONCLUSION: [14C]MeAIB uptake occurred principally via a Na+-dependent A type mechanism whereas [3H]MET uptake occurred predominantly via a Na+-independent L type mechanism although other transporters were also utilized depending on cell type. There was no correlation between [3H]MET uptake and total system L amino acid transporter (LAT) expression. In contrast, [14C]MeAIB uptake strongly correlated with total system A amino acid transporter (SNAT) expression and proliferative activity in this preliminary study using four human carcinoma cell lines. Carcinoma proliferative activity also correlated with total SNAT expression. Advances in Knowledge and Implications for Patient Care: Because there is a significant correlation between the accumulation of [14C]MeAIB and the gene expression level of total SNAT as well as the accumulation of [3H]FLT, it is suggested that use of the analog [11C]MeAIB in PET may provide an indication of tumor cell proliferative activity. [11C]MeAIB is therefore expected to be very useful in PET imaging.


Subject(s)
Amino Acid Transport Systems/genetics , Gene Expression Regulation, Neoplastic/drug effects , Methionine/metabolism , beta-Alanine/analogs & derivatives , Biological Transport , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Pilot Projects , Positron-Emission Tomography , beta-Alanine/metabolism , beta-Alanine/pharmacology
15.
Nucl Med Biol ; 44: 78-82, 2017 01.
Article in English | MEDLINE | ID: mdl-27835793

ABSTRACT

INTRODUCTION: Although [S-methyl-11C]-labeled L-methionine and D-methionine (11C-L-MET and 11C-D-MET) are useful radiotracers for positron emission tomography imaging of brain tumors, it is not known whether the accumulation and transport mechanisms underlying uptake of 11C-D-MET and 11C-L-MET are the same. 11C-L-MET is mainly taken up by the amino acid transport system L. We evaluated accumulation and the transport mechanism of D-MET in high- and low-grade human glioma cells in vitro. METHODS: The expression of transport system genes in high- (A172 and T98G) and low-grade (SW1088 and Hs683) glioma cells was quantitatively analyzed. Accumulation of [S-methyl-3H]-L-MET (3H-L-MET) and [S-methyl-3H]-D-MET (3H-D-MET) in these cells was compared during 60min of incubation. The transport mechanism of 3H-L-MET and 3H-D-MET was investigated by incubating the cells with these compounds and examining the effect of the inhibitors 2-amino-2-norbornane-carboxylic acid or α-(methylamino) isobutyric acid. RESULTS: Absolute expression levels of system L and system alanine-serine-cysteine (ASC) in high-grade glioma cells were higher than in low-grade cells. In high-grade glioma cells, expression of system ASC genes was higher than that of system L genes. 3H-D-MET, which is transported by systems L and ASC, accumulated at higher levels than 3H-L-MET at all incubation times because 3H-D-MET is more sensitive to system ASC than 3H-L-MET. Conversely, in low-grade glioma cells with lower expression of system L and ASC, 3H-D-MET accumulated at higher levels than 3H-L-MET in early incubation times because 3H-D-MET may be more sensitive to system ASC than system L. CONCLUSION: 3H-D-MET was mainly transported by systems L and ASC and sensitive to system ASC, whereas 3H-L-MET was transported by system L in human glioma cells. In vitro, the accumulation of 3H-D-MET was significantly higher than that of 3H-L-MET during the entire incubation time in high-grade glioma cells, and in early incubation times in low-grade glioma cells.


Subject(s)
Glioma/pathology , Methionine/chemistry , Methionine/metabolism , Amino Acid Transport Systems/metabolism , Biological Transport , Carbon Radioisotopes , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Glioma/metabolism , Humans , Neoplasm Grading , Positron-Emission Tomography , Stereoisomerism
16.
Nucl Med Biol ; 42(5): 475-481, 2015 May.
Article in English | MEDLINE | ID: mdl-25725984

ABSTRACT

INTRODUCTION: Early detection and/or prediction of metastasis provide more prognostic relevance than local recurrence. Direct spread into the peritoneum is frequently found in pancreatic cancer patients, but positron emission tomography (PET) with 2-deoxy-2-fluoro-d-glucose (FDG) is not useful for identifying such metastasis. We investigated a method to enhance FDG accumulation using AsPC-1 human ascites tumor cells. METHODS: (14)C-FDG accumulation was assessed under the following conditions: 1) characteristics of (14)C-FDG transport were examined using phloridzin, a Na(+)-free buffer, and various hexoses, and 2) accumulation of (14)C-FDG was measured in cells that were pretreated with hexose for various time periods, and activity of 6-phosphofructo-1-kinase (PFK-1) was assayed. RESULTS: (14)C-FDG transport into AsPC-1 cells was mediated primarily by a Na(+)-independent transport mechanism. Aldohexoses such as d-glucose, D-mannose, and D-galactose inhibited (14)C-FDG transport. Cells pretreated with d-glucose, D-mannose, or D-fructose exhibited augmented (14)C-FDG accumulation. Pretreatment with higher concentrations of D-glucose or D-fructose tended to increase PFK-1 activity. CONCLUSIONS: Very little information has been published about the association between PFK-1 and FDG accumulation, and we confirmed the impacts of various hexoses on the activity of PFK-1 and FDG accumulation in AsPC-1 cells. Clarifying the relevance of PFK-1 in FDG accumulation will contribute to developing new features of FDG-PET, because PFK-1 is the main regulator of glycolysis.


Subject(s)
Early Detection of Cancer/methods , Fluorodeoxyglucose F18/metabolism , Glycolysis , Pancreatic Neoplasms/pathology , Ascites/pathology , Biological Transport/drug effects , Cell Line, Tumor , Glycolysis/drug effects , Hexoses/pharmacology , Humans , Neoplasm Metastasis , Phosphofructokinase-1/metabolism , Positron-Emission Tomography
17.
Nucl Med Biol ; 42(6): 536-40, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25744361

ABSTRACT

INTRODUCTION: A specific diagnosis for melanoma is strongly desired because malignant melanoma has poor prognosis. In a previous study, although radioiodine-125-labeled 4-hydroxyphenyl-L-cysteine ((125)I-L-PC) was found to have good substrate affinity for tyrosinase enzyme in the melanin metabolic pathway, (123/131)I-L-PC had insufficient substrate affinity for tyrosinase to diagnose melanoma. In this study, we synthesized 4-hydroxyphenylcysteamine (4-PCA) and developed a novel radioiodine-125-labeled 4-hydroxyphenylcysteamine ((125)I-PCA) to increase affinity for the melanin biosynthesis pathway. METHODS: 4-PCA was separated with 2-hydroxyphenylcysteamine (2-PCA), which is an isomer of 4-PCA, and was examined using melting point, proton nuclear magnetic resonance, mass spectrometry and elemental analysis. (125)I-PCA was prepared using the chloramine-T method under no-carrier added conditions. We performed biodistribution experiments using B16 melanoma-bearing mice using (125)I-PCA, (125)I-L-PC, (125)I-α-methyl-L-tyrosine, (123)I-m-iodobenzylguanidine and (67)Ga-citrate. In vitro assay was performed with B16 melanoma cells, and affinity for tyrosinase, DNA polymerase and amino acid transport was evaluated using phenylthiourea, thymidine, ouabine and L-tyrosine inhibitor. In addition, partition coefficients of (125)I-PCA were evaluated. RESULTS: In the synthesis of 4-PCA, analysis values did not differ between calculated and reported values, and 4-PCA was separated from 2-PCA at high purity. In biodistribution experiments, (125)I-PCA was accumulated and retained in B16 melanoma cells when compared with (125)I-L-PC. (125)I-PCA showed the highest values at 60 min after radiotracer injection in melanoma-to-muscle ratios, melanoma-to-blood ratios and melanoma-to-skin ratios. Accumulation of (125)I-PCA was significantly inhibited by phenylthiourea and thymidine. Partition coefficients of (125)I-PCA were lower than those of N-isopropyl-p-[(123)I]iodoamphetamine and were not significantly different from (125)I-L-PC. CONCLUSIONS: (125)I-PCA is a better substrate for tyrosinase and DNA polymerase and has higher uptake and longer retention in B16 melanoma cells when compared with (125)I-L-PC. Therefore, (123/131)I-PCA has good potential for diagnosis for malignant melanoma. ADVANCE IN KNOWLEDGE: (125)I-PCA will be a specific diagnosis tool for malignant melanoma. IMPLICATIONS FOR PATIENT CARE: (123/131)I-PCA has good potential for the diagnosis of malignant melanoma when compared with other SPECT tracers, as well as anti-melanoma chemotherapeutic drugs.


Subject(s)
Cysteine/analogs & derivatives , Iodine Radioisotopes/pharmacokinetics , Melanoma, Experimental/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Animals , Cysteine/chemistry , Male , Mice , Mice, Inbred C57BL , Monophenol Monooxygenase/chemistry , Radiopharmaceuticals/chemical synthesis , Tissue Distribution , Tomography, Emission-Computed, Single-Photon/methods , Tumor Cells, Cultured , Tyrosine/chemistry
18.
Nucl Med Biol ; 42(2): 171-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25441254

ABSTRACT

INTRODUCTION: (123)I-N-isopropyl-p-iodoamphetamine ((123)I-IMP) is metabolized and converted to (123)I-p-iodoamphetamine ((123)I-PIA) by CYP2C19 in humans. Since variations in (123)I-PIA levels reflect variations in CYP2C19 activity, CYP2C19 activity can be estimated by quantitative analysis of (123)I-PIA levels. Thus, (123)I-IMP administration can provide diagnostic information not only regarding cerebral blood flow (rCBF) but also regarding metabolic function. The aim of the present study was to detect variations in CYP activity in mice using metabolite analysis. METHODS: Metabolism of (125)I-IMP in pooled homogenates of mouse liver (MLH) was analyzed by high-performance liquid chromatography (HPLC) in the presence or absence of NADPH. The amount of (125)I-PIA generated was calculated as the normalized peak area of the chromatogram. Inhibition of (125)I-IMP metabolism was evaluated using the inhibitor SKF-525A. A biodistribution study of (125)I-IMP was performed to determine the organ distribution of (125)I-IMP/(125)I-IMP metabolites and the effect of SKF-525A. Variations in CYP activity in vivo were detected by administration of (123)I-IMP and/or SKF-525A to mice. The liver and the kidney were then excised, homogenized and analyzed using HPLC. RESULTS: (125)I-IMP was metabolized by MLH in the presence of NADPH, and the production of (125)I-PIA was inhibited by SKF-525A. SKF-525A did not greatly affect the biodistribution of (125)I-IMP/(125)I-IMP metabolites in vivo. Both (123)I-IMP and (123)I-PIA were detected in organs of control mice. However, (123)I-PIA was not detected in the livers or kidneys of mice treated with SKF-525A. CONCLUSIONS: CYP activity in vivo was inhibited by SKF-525A treatment. Variations in CYP activity could be detected in the blood, liver and kidney as changes in the peak area of (123)I-PIA. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: (123)I-IMP metabolite analysis has the potential to provide beneficial information for prediction of the effect of medicines, in addition to its contribution to more accurate rCBF diagnosis that reflects individual CYP activity.


Subject(s)
Cytochrome P-450 CYP2C19/metabolism , Enzyme Assays/methods , Inosine Monophosphate/metabolism , Precision Medicine , Animals , Inosine Monophosphate/pharmacokinetics , Iodine Radioisotopes/metabolism , Male , Mice , Tissue Distribution
19.
Appl Radiat Isot ; 88: 99-103, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24388319

ABSTRACT

BPA used in BNCT has a similar structure to some essential amino acids and is transported into tumor cells by amino acid transport systems. Previous study groups have tried various techniques of loading BPA to increase intracellular boron concentration. CHO-K1 cells demonstrate system L (LAT1) activity and are suitable for specifying the transport system of a neutral amino acid. In this study, we examined the intracellular accumulation of boron in CHO-K1 cells by amino acid transport control, which involves co-loading with L-type amino acid esters. Intracellular boron accumulation in CHO-K1 cells showed the greatest increased upon co-loading 1.0mM BPA, with 1.0mM l-Tyr-O-Et and incubating for 60min. This increase is caused by activation of a system L amino acid exchanger between BPA and l-Tyr. The amino acid esters are metabolized to amino acids by intracellular hydrolytic enzymes that increase the concentrations of intracellular amino acids and stimulate exchange transportation. We expect that this amino acid transport control will be useful for enhancing intracellular boron accumulation.


Subject(s)
Boron Compounds/pharmacokinetics , Boron Neutron Capture Therapy/methods , Drug Carriers/pharmacokinetics , Phenylalanine/analogs & derivatives , Tyrosine/pharmacokinetics , Amino Acid Transport Systems/pharmacokinetics , Animals , Boron Compounds/administration & dosage , Boron Compounds/chemistry , CHO Cells , Cricetinae , Cricetulus , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Metabolic Clearance Rate , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Phenylalanine/pharmacokinetics , Tyrosine/administration & dosage , Tyrosine/chemistry
20.
Nucl Med Biol ; 40(3): 366-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23312701

ABSTRACT

INTRODUCTION: When a radiopharmaceutical is simultaneously administered with a medicine that has high affinity for the same plasma protein, the radiopharmaceutical is released at higher concentrations in blood, leading to enhanced transfer into target tissues. This is known as the serum protein binding displacement method. In this study, we investigated the pharmacokinetic alteration of technetium-99m-labeled mercaptoacetylglycylglycylglycine ((99m)Tc-MAG3) using the serum protein binding displacement method. METHODS: Rat and human serum protein binding rates of (99m)Tc-MAG3 were measured by ultrafiltration with or without displacers of human serum albumin (HSA) binding sites I and II (200µM and 400µM loading). Male Wistar rats were injected with (99m)Tc-MAG3 (740kBq/0.3mL saline) via the tail vein, and biodistribution was assessed at 2, 5, 10 and 15min. Dynamic whole-body images were obtained for (99m)Tc-MAG3 (11.1MBq/0.3mL saline)-injected rats, with or without HSA displacers. RESULTS: (99m)Tc-MAG3 strongly bound to HSA (87.37%±2.13%). Using HSA site I displacers, the free fraction of (99m)Tc-MAG3 increased significantly (1.20 to 1.47 times) when compared with controls. For biodistribution and imaging, rapid blood clearance was observed with bucolome (BCL) loading, which is an HSA site I displacer. With BCL loading, peak times for rat renograms were respectively shifted from 240s to 110s, and from 170s to 120s. CONCLUSIONS: We found that (99m)Tc-MAG3 bound to the HSA binding site I. It was confirmed that pharmacokinetic distribution of (99m)Tc-MAG3 is altered by presence of BCL, which leads to increases in the free fraction of (99m)Tc-MAG3, and BCL produced rapid blood clearance and fast peak times on rat renograms. The serum protein binding displacement method using (99m)Tc-MAG3 and BCL, a safe displacer for humans, may be applicable to clinical study and lead to better diagnostic images with shorter waiting times and lower radiation doses for patients.


Subject(s)
Serum Albumin/metabolism , Technetium Tc 99m Mertiatide/metabolism , Technetium Tc 99m Mertiatide/pharmacokinetics , Animals , Binding, Competitive , Humans , Male , Protein Binding , Rats , Rats, Wistar , Technetium Tc 99m Mertiatide/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...