Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 328: 118132, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38565411

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.


Subject(s)
Anthelmintics , Haemonchus , Helminthiasis , Limonins , Plants, Medicinal , Adult , Animals , Humans , Plants, Medicinal/chemistry , Tubulin , Anthelmintics/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Colchicine
2.
Heliyon ; 9(10): e20636, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37842564

ABSTRACT

Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.

3.
J Ethnopharmacol ; 300: 115757, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36167233

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Callicarpa arborea Roxb. is widely used as traditional medicine especially by the tribal people of Bangladesh in the management of wide range of ailments. In addition to Bangladesh, the leaves of this plant is utilized as a remedy to various painful and inflammatory conditions including rheumatism, toothache and stomachache in other countries of Indian subcontinent. AIM OF THE STUDY: Depending on the ethnomedicinal uses, we undertook this study to investigate the in-vivo analgesic and anti-inflammatory activities of the methanolic extract of C. arborea Roxb. leaves in Swiss albino mice as well as its chemical composition. MATERIALS AND METHODS: We evaluated the analgesic activity of Callicarpa arborea Roxb. leaves by the acetic acid induced writhing test, the hot plate test, and the formalin test. We undertook the egg albumin induced paw edema test to determine the anti-inflammatory activity of the plant. Furthermore, we conducted the phytochemical profiling by gas chromatography-mass spectrometry (GC-MS). RESULTS: In acute toxicity test, no mortality was observed at the highest dose of 2000 mg/kg b.w. Significant (p < 0.005) inhibition of acetic acid induced writhing was observed at both doses of the extract. A dose dependent increase in the response time was seen in the hot-plate test. In the formalin test, the extract significantly inhibited pain response in both early and late phase. We observed marked anti-inflammatory activity manifested by a significant (p < 0.005) reduction in egg albumin induced paw edema. We identified a total of twenty one compounds in the extract of by GC-MS analysis. CONCLUSION: Taken all into consideration we conclude that the leaves of C. arborea Roxb. possesses potent analgesic and anti-inflammatory activity, thus justifying its's ethnomedicinal use against painful and inflammatory pathological conditions.


Subject(s)
Callicarpa , Acetic Acid/therapeutic use , Albumins/analysis , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Edema/chemically induced , Edema/drug therapy , Humans , Methanol/therapeutic use , Mice , Pain/chemically induced , Pain/drug therapy , Pain/pathology , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Leaves/chemistry
4.
Article in English | MEDLINE | ID: mdl-35497914

ABSTRACT

The Sundarbans, a UNESCO world heritage site, is one of the largest mangrove forests in one stretch. Mangrove plants from this forest are little studied for their endophytic fungi. In this study, we isolated fourteen endophytic fungi from the plants Ceriops decandra and Avicennia officinalis collected from the Sundarbans. Five of them were identified as Aspergillus sp. and one as Penicillium sp. by macroscopic and microscopic observation. Antibacterial activity of the crude extracts obtained from these endophytes was determined against Staphylococcus aureus, Micrococcus luteus, Escherichia coli, and Pseudomonas aeruginosa using resazurin-based microtiter assay. The isolated endophytes showed varying degrees of antibacterial activity with MICs ranging between 5 and 0.078 mg/mL. Molecular identification of the most active endophyte revealed its identity as Aspergillus fumigatus obtained from the leaves of C. decandra. Acute toxicity study of the ethyl acetate extract of A. fumigatus in mice revealed no mortality even at the highest dose of 2000 mg/kg bodyweight, though some opposing results are found in the subacute toxicity study. The extract was subjected to silica gel and Sephadex column chromatography resulting in the isolation of three pure compounds. LC-MS analysis of these pure compounds revealed their identity as fumigaclavine C, azaspirofuran B, and fraxetin. This is the first report of fraxetin from A. fumigatus. All three identified compounds were previously reported for their antibacterial activity against different strains of both Gram-positive and Gram-negative bacteria. Therefore, the observed antibacterial activity of the ethyl acetate (EtOAc) extract of A. fumigatus could be due to the presence of these compounds. These results support the notion of investigating fungal endophytes from the Sundarbans for new antimicrobial compounds.

5.
Article in English | MEDLINE | ID: mdl-35368757

ABSTRACT

Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.

6.
Adv Pharmacol Pharm Sci ; 2021: 1540336, 2021.
Article in English | MEDLINE | ID: mdl-34957401

ABSTRACT

Plants act as a rich source of novel natural pesticides. In the backdrop of the recent revival of interest in developing plant-based insecticides, this study was carried out to investigate the pesticidal activity of Sundarban mangrove plants. A total of nine different plant parts from five plants, namely, Aegiceras corniculatum, Excoecaria agallocha, Heritiera fomes, Xylocarpus moluccensis, and Xylocarpus granatum, were extracted with methanol and tested for insecticidal activity against two common stored product pests Sitophilus oryzae and Sitophilus zeamais using direct contact feeding deterrent wafer disc method. Three bark extracts from A. corniculatum, E. agallocha, and H. fomes showed potent and statistically significant insecticidal activity against both S. oryzae and S. zeamais pests (80-100% mortality). All the active bark extracts were further fractionated using C-18 solid-phase extraction (SPE) columns and tested for their insecticidal activity against S. oryzae pest to identify the active fraction. Only the SPE4 fraction (100% MeOH) from all the three active plants showed the activity against S. oryzae pest with a lethal concentration 50% (LC50) value of 0.5, 1.0, and 1.5 mg/disc for A. corniculatum, E. agallocha, and H. fomes, respectively. The active fraction of A. corniculatum was further profiled for identification of active compounds using LC-ESI-MS and identified (along with some unknown peaks) two previously reported compounds at m/z 625.17630 (isorhamnetin 3-O-rutinoside) and 422.25346 (paspaline) as major constituents. Insecticidal activities of these plants are reported in this study for the first time and would be useful in promoting research aiming for the development of new biopesticides from mangrove plants.

7.
J Ethnopharmacol ; 281: 114577, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34464698

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Consumable herbs play a basic part in sustenance and human health. Traditionally, Colocasia gigantea Hook (Araceae) is used to treat fever, infection, wounds healing, drowsiness, tuberculosis, stomach problems etc. AIM OF THE STUDY: The study aspired to identify bioactive compounds, to evaluate anti-inflammatory and analgesic potentials of edible herb C. gigantea, and to molecular docking study against anti-inflammatory enzyme Cyclooxygenase-2 (COX-2). MATERIALS AND METHODS: Chemical components of C. gigantea were discerned by HPLC and GCMS assays. In vitro anti-inflammatory activity was appraised by heat-induced, hypotonicity, and hydrogen peroxide-induced hemolysis assays and in vivo by formalin-induced paw edema assay. In vivo analgesic activity was evaluated by acetic acid-induced pain modulation assay. Also, molecular docking of the identified compounds was explored against the anti-inflammatory enzyme cyclooxygenase-2. RESULTS: HPLC-DAD analysis divulged the presence of trans-cinnamic acid along with (-)-epicatechin as a prime component. Also, 9, 12-Octadecadienoic acid (37.86%) and n-Hexadecanoic acid (25.89%) as the major as well as 24 other compounds were confirmed through GCMS in the extract. In in vitro anti-inflammatory study, C. gigantea extract indicated prominent erythrocyte membrane stabilization activity with good percentage aegis in all experimental assays. In addition to, formalin-induced in vivo anti-inflammatory assay revealed the maximum (42.37% and 48.72%) suppression of edema at the fourth hour at 250 and 500 mg/kg body weight, respectively. Moreover, an in-vivo pain modulation assay exposed significant (p < 0.05) activity at experimental doses. Furthermore, in the docking study, (-)-epicatechin was more active rather than other identified compounds with strong binding affinity to COX-2 protein. CONCLUSIONS: The extract evinced remarkable anti-inflammatory and analgesic activities. Identified bioactive components along with other components of the extract might play a pivotal role in the observed bioactivity and the results vindicate the use of edible herb C. gigantea in ancestral medicine.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Colocasia/chemistry , Phytotherapy , Plants, Edible/chemistry , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Biomarkers , Cyclooxygenase 2/chemistry , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Humans , Mice , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Phytochemicals/adverse effects , Phytochemicals/chemistry , Phytochemicals/pharmacokinetics , Plant Extracts/chemistry , Plant Extracts/pharmacology , Protein Conformation , Toxicity Tests
8.
Front Nutr ; 8: 653918, 2021.
Article in English | MEDLINE | ID: mdl-34041259

ABSTRACT

Amaranthus spinosus is a common vegetable of Bangladesh and well-known for its ethnomedicinal uses. In this study, we have evaluated the ability of powdered supplementation, methanol extract, and aqueous extract of A. spinosus in attenuating in high-carbohydrate-high-fat (HCHF) diet-induced obesity and associated metabolic disorders in female obese rates. Several parameters have been analyzed in this study including body weight, organ weight, fat deposition, glycemic status, lipid levels, hepatic and renal biomarkers, hepatic antioxidant status, and hepatosteatosis. All three samples of A. spinosus significantly reduced weight gain, organ weight, and abdominal fat deposition. Improved glucose tolerance and lipid parameters were seen in obese rats administered with A. spinosus powder, methanol extract, and aqueous extract. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and creatine kinase levels were normalized by the test samples. A. spinosus boosted hepatic antioxidant levels including reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Histopathology of liver tissue revealed increased fat infiltration and higher steatosis score in HCHF diet-fed obese rats which was brought down by A. spinosus. Analyzing all the results it can be concluded that this medicinal herb is beneficial in the management of obesity and obesity-induced metabolic disorders, making it a prospective food supplement.

9.
Biochem Biophys Rep ; 25: 100909, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33521336

ABSTRACT

Date palm (P. dactylifera) plays a vital role in ethnomedicinal practices in several parts of the world. There are over 2000 cultivars of date palm that differ in chemical composition and extent of bioactivity. The present study was undertaken to comparatively evaluate the antioxidant potential of three cultivars of date palm (Ajwah, Safawy and Sukkari) from Saudi Arabia and analyze their phenolic constituents in order to draw a rationale for their activity. Antioxidant activities of the date cultivars were evaluated by different quantitative methods including 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assay, total antioxidant capacity, reducing power, total phenolic (TPC), flavonoid (TFC) and tannin content (TTC), while qualitative phenolic composition was determined using ultra performance liquid chromatography coupled to quadropole time of flight mass spectrometry (UPLC-QTOF-MS). All the three date extracts showed good DPPH radical scavenging (IC50 103-177 µg/mL) and hydroxyl radical scavenging (IC50 1.1-1.55 mg/mL) activity and total antioxidant capacity (IC50 87-192 µg/mL). The reducing power was also comparable to that of ascorbic acid, used as standard in above experiments. All the three samples contain significant amount of major antioxidant components (phenolic, flavonoid and tannin) that successfully correlates with the results of radical scavenging assays. UPLC-QTOF-MS revealed a total of 22 compounds in these date cultivars classified into common phenolics, flavonoids, sterols and phytoestrogens. Significant variation in the degree of antioxidant activity of these three date cultivars can be attributed to the difference in the content and composition of phenolic compounds.

10.
Semin Cancer Biol ; 69: 52-68, 2021 02.
Article in English | MEDLINE | ID: mdl-32014609

ABSTRACT

Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Nanomedicine , Nanoparticles/administration & dosage , Neoplasms/diagnosis , Neoplasms/drug therapy , Animals , Humans , Nanoparticles/chemistry
11.
Curr Drug Targets ; 22(6): 656-671, 2021.
Article in English | MEDLINE | ID: mdl-32981501

ABSTRACT

Pain is an unpleasant sensation that has complex and varying causative etiology. Modern drug discovery focuses on identifying potential molecules that target multiple pathways with a safer profile compared to those with a single target. The current treatment of pain and inflammation with the available therapeutics has a number of major side effects. Pain is one of the major clinical problems that need functional therapeutics which act on multiple targets and with low toxicity. Curcumin, a naturally occurring polyphenolic compound from Curcuma longa, has been used for years in Ayurvedic, Chinese, and in many other systems of traditional medicine. Pre-clinical data published thus far demonstrated that curcumin possesses multi-target biological functions, suggesting its potential use to cure different diseases. However, there is no or very brief systematic review of its potential use in pain and inflammation with underlying mechanisms for such activities. Accordingly, the aim of the current review was to update the pre-clinical data of curcumin and its multiple targeting pathways for analgesic and anti-inflammatory effects, and to further propose a molecular mechanism(s). A literature study was conducted using different known databases, including Pubmed, SciFinder, Google Scholar, and Science Direct. Available pre-clinical data suggest the ameliorating effect of curcumin in pain and inflammation is rendered through the modulation of pain pathways, including inhibition of a number of pro-inflammatory mediators, inhibition of oxidative stress and cyclooxygenase-2 (COX-2), down-regulation of Ca2+/calmodulin-depend protein kinase II (CaMKIIα) and calcium channels like transient receptor potential (TRP), modulation of metabotropic glutamate receptor-2 (mGlu2), modulation of monoamine system, inhibition of JAK2/STAT3 signaling pathway, remodeling of extracellular matrix proteins, inhibition of apoptosis, inhibition of JNK/MAPK and ERK/CREB signaling pathway, and activation of the opioid system. Taken all together, it is evident that curcumin is one of the promising, safe, and natural polyphenolic molecules that target multiple molecular pathways in pain and can be beneficial in the treatment and management of pain and inflammation.


Subject(s)
Curcumin , Inflammation , Pain , Apoptosis , Curcumin/pharmacology , Curcumin/therapeutic use , Humans , Inflammation/drug therapy , Pain/drug therapy , Signal Transduction/drug effects
12.
Phytother Res ; 35(2): 1069-1079, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33124164

ABSTRACT

When tested in the acetic acid-induced writhing and formalin-induced paw-licking tests, the ethanol extract of Vernonia patula (VP) aerial parts showed significant antinociceptive activity. In neuropharmacological tests, it also significantly delayed the onset of sleep, increased the duration of sleeping time, and significantly reduced the locomotor activity and exploratory behaviour of mice. Five phenolic compounds, namely gallic acid, vanillic acid, caffeic acid, quercetin and kaempferol, were detected in VP following HPLC-DAD analysis. The presence of these phenolic compounds in VP provides some support for the observed antinociceptive and sedative effects. A computational study was performed to predict the binding affinity of gallic acid, vanillic acid, caffeic acid, quercetin and kaempferol towards the cannabinoid type 1 (CB1) receptor. Caffeic and vanillic acid showed the highest probable ligand efficiency indices towards the CB1 target. Vanillic acid displayed the best blood-brain barrier penetration prediction score. These findings provide some evidence for the traditional use of VP to treat pain.


Subject(s)
Analgesics/therapeutic use , Cannabinoids/therapeutic use , Hypnotics and Sedatives/therapeutic use , Phenols/therapeutic use , Plant Extracts/chemistry , Vernonia/chemistry , Analgesics/pharmacology , Animals , Cannabinoids/pharmacology , Hypnotics and Sedatives/pharmacology , Male , Mice , Phenols/pharmacology
13.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32836826

ABSTRACT

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

14.
J Food Biochem ; 44(11): e13444, 2020 11.
Article in English | MEDLINE | ID: mdl-32815182

ABSTRACT

Heliotropium indicum Linn is a leafy vegetable that has been used in Bangladeshi ethnomedicinal practices. The attenuation effect of H. indicum supplementation was evaluated in high carbohydrate high-fat (HCHF) diet-induced obesity and associated disorders in 8-weeks-old female Wister rats. H. indicum significantly (p < .05) prevented weight gain and improved glucose intolerance in obese rats. It also significantly (p < .05) ameliorated lipid parameters in HCHF diet fed rats preventing hypercholesterolemia and hypertriglyceridemia, resulting in improved the artherogenic index (AI). Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities were brought to normal by H. indicum. It significantly elevated superoxide dismutase (SOD) and catalase (CAT) activities as well as increased reduced glutathione (GSH) concentration in liver. The intense liver fat deposition was seen in HCHF fed rats which were relatively low in H. indicum fed rats. Therefore, H. indicum has the ability to prevent obesity and associated metabolic disorders. PRACTICAL APPLICATIONS: Obesity and associated metabolic disorders are the most common threats to public health. Modern lifestyle and food habits are the main causes behind this malice, and the introduction of functional foods in daily diet is proved to be highly beneficial. Results of this study demonstrated that H. indicum can effectively attenuate obesity and its associated metabolic complications. Therefore, the current study has the merits to promote scientific knowledge of the dietary application of H. indicum as a functional food among the community.


Subject(s)
Diet, High-Fat , Heliotropium , Obesity , Animals , Carbohydrates , Diet, High-Fat/adverse effects , Dietary Supplements , Female , Obesity/drug therapy , Obesity/prevention & control , Oxidative Stress , Rats , Rats, Wistar
15.
Anticancer Agents Med Chem ; 20(14): 1636-1647, 2020.
Article in English | MEDLINE | ID: mdl-32560616

ABSTRACT

BACKGROUND: Cancer is a dreadful disease causing thousands of deaths per year worldwide, which requires precision diagnostics and therapy. Although the selection of therapeutic regimens depends on the cancer type, chemotherapy remains a sustainable treatment strategy despite some of its known side-effects. To date, a number of natural products and their derivatives or analogues have been investigated as potent anticancer drugs. These drug discoveries have aimed for targeted therapy and reduced side-effects, including natural therapeutic regimens. OBJECTIVE: This review introduces a prospective fungal-derived polyphenol, Hispolon (HIS), as an anticancer agent. Accordingly, this review focuses on exploring the anticancer effect of hispolon based on information extracted from databases such as PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar. METHODS: A literature search in PubMed, ScienceDirect, MedLine, Web of Science, and Google Scholar was accomplished, using the keyword 'Hispolon', pairing with 'cancer', 'cytotoxicity', 'cell cycle arrest', 'apoptosis', 'metastasis', 'migration', 'invasion', 'proliferation', 'genotoxicity', 'mutagenicity', 'drug-resistant cancer', 'autophagy', and 'estrogen receptor. RESULTS: Database-dependent findings from reported research works suggest that HIS can exert anticancer effects by modulating multiple molecular and biochemical pathways, including cell cycle arrest, apoptosis, autophagy, inhibition of proliferation, metastasis, migration, and invasion. Moreover, HIS inhibits the estrogenic activity and exhibits chemoprevention prospects, possibly due to its protective effects such as anticancer and anti-inflammatory mechanisms. To date, a number of HIS derivatives and analogues have been introduced for their anticancer effects in numerous cancer cell lines. CONCLUSION: Data obtained from this review suggest that hispolon and some of its derivatives can be promising anticancer agents, and may become plant-based cancer chemotherapeutic leads for the development of potent anticancer drugs, alone or in combination with other chemotherapeutic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Catechols/pharmacology , Fungi/chemistry , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Catechols/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure
16.
Front Pharmacol ; 11: 565, 2020.
Article in English | MEDLINE | ID: mdl-32477108

ABSTRACT

The Solanaceae is an important plant family that has been playing an essential role in traditional medicine and human nutrition. Members of the Solanaceae are rich in bioactive metabolites and have been used by different tribes around the world for ages. Antimicrobial peptides (AMPs) from plants have drawn great interest in recent years and raised new hope for developing new antimicrobial agents for meeting the challenges of antibiotic resistance. This review aims to summarize the reported AMPs from plants of the Solanaceae with possible molecular mechanisms of action as well as to correlate their traditional uses with reported antimicrobial actions of the peptides. A systematic literature study was conducted using different databases until August 2019 based on the inclusion and exclusion criteria. According to literature, a variety of AMPs including defensins, protease inhibitor, lectins, thionin-like peptides, vicilin-like peptides, and snaking were isolated from plants of the Solanaceae and were involved in their defense mechanism. These peptides exhibited significant antibacterial, antifungal and antiviral activity against organisms for both plant and human host. Brugmansia, Capsicum, Datura, Nicotiana, Salpichora, Solanum, Petunia, and Withania are the most commonly studied genera for AMPs. Among these genera, Capsicum and the Solanum ranked top according to the total number of studies (35%-38% studies) for different AMPs. The mechanisms of action of the reported AMPs from Solanaceae was not any new rather similar to other reported AMPs including alteration of membrane potential and permeability, membrane pore formation, and cell aggregation. Whereas, induction of cell membrane permiabilization, inhibition of germination and alteration of hyphal growth were reported as mechanisms of antifungal activity. Plants of the Solanaceae have been used traditionally as antimicrobial, insecticidal, and antiinfectious agents, and as poisons. The reported AMPs from the Solanaceae are the products of chemical shields to protect plants from microorganisms and pests which unfold an obvious link with their traditional medicinal use. In summary, it is evident that AMPs from this family possess considerable antimicrobial activity against a wide range of bacterial and fungal pathogens and can be regarded as a potential source for lead molecules to develop new antimicrobial agents.

17.
Phytother Res ; 34(10): 2471-2492, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32248575

ABSTRACT

Several corona viral infections have created serious threats in the last couple of decades claiming the death of thousands of human beings. Recently, corona viral epidemic raised the issue of developing effective antiviral agents at the earliest to prevent further losses. Natural products have always played a crucial role in drug development process against various diseases, which resulted in screening of such agents to combat emergent mutants of corona virus. This review focuses on those natural compounds that showed promising results against corona viruses. Although inhibition of viral replication is often considered as a general mechanism for antiviral activity of most of the natural products, studies have shown that some natural products can interact with key viral proteins that are associated with virulence. In this context, some of the natural products have antiviral activity in the nanomolar concentration (e.g., lycorine, homoharringtonine, silvestrol, ouabain, tylophorine, and 7-methoxycryptopleurine) and could be leads for further drug development on their own or as a template for drug design. In addition, a good number of natural products with anti-corona virus activity are the major constituents of some common dietary supplements, which can be exploited to improve the immunity of the general population in certain epidemics.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/virology , Coronavirus/drug effects , Plant Extracts/pharmacology , Alkaloids/pharmacology , Animals , Biological Products/pharmacology , Coronavirus/metabolism , Coronavirus/pathogenicity , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Drug Development , Humans , Indolizines/pharmacology , Ouabain/pharmacology , Phenanthrenes/pharmacology , Quinolizines/pharmacology , Triterpenes/pharmacology , Viral Proteins/metabolism , Virus Replication/drug effects
18.
Heliyon ; 5(11): e02768, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31768435

ABSTRACT

Southern coastal people of Bangladesh are highly vulnerable to food insecurity and malnutrition due to coastal flooding, deforestation and increased soil salinity. A number of green leafy vegetables are found in the southern coastal belt being traditionally eaten as daily basis by local people. But they are unaware of nutritional and medicinal use of these vegetables. To contribute to their wider utilization, five common vegetables namely Hibiscus sabdariffa, Trianthema portulacastrum, Diplazium esculentum, Heliotropium indicum L. and Hygrophila auriculata were selected for analysis of nutritional proximate, micronutrients and antioxidant potential. Nutritional properties were analyzed in terms of moisture, pH, protein, lipid, ash, fibre, minerals and carbohydrate. Total flavonoid, tannin and antioxidant capacity were evaluated using established protocols. The results demonstrated that collected plants are rich in carbohydrate, fibre, proteins, moisture and ash content but low in lipid content. The mineral elements were high with remarkable amount of Na (19.9-21.5 mg/gm), K (7.9-13.5 mg/gm) and P (1.0-1.8 mg/gm). All the samples were found to have considerable amount of flavonoid (90.6-144.5 mg QE/gm) and tannin content (26.8-57.2 mg GAE/gm). The IC50 value of DPPH and superoxide radical scavenging was the lowest for H. indicum (37.1 and 83.4 µg/ml, respectively) whereas T. portulacastrum possessed high reducing power (IC50 53.7 µg/ml). Among the five investigated species, T. portulacastrum and H. indicum were found to have good nutritional and antioxidant properties, thus can be promoted as a significant source of nutritional and antioxidant food supplements.

19.
Phytother Res ; 33(10): 2585-2608, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31373097

ABSTRACT

Traditionally, sesame oil (SO) has been used as a popular food and medicine. The review aims to summarize the antioxidant and antiinflammatory effects of SO and its identified compounds as well as further fatty acid profiling and molecular docking study to correlate the interaction of its identified constituents with cyclooxygenase-2 (COX-2). For this, a literature study was made using Google Scholar, Pubmed, and SciFinder databases. Literature study demonstrated that SO has potential antioxidant and antiinflammatory effects in various test systems, including humans, animals, and cultured cells through various pathways such as inhibition of COX, nonenzymatic defense mechanism, inhibition of proinflammatory cytokines, NF-kB or mitogen-activated protein kinase signaling, and prostaglandin synthesis pathway. Fatty acid analysis of SO using gas chromatography identified known nine fatty acids. In silico study revealed that sesamin, sesaminol, sesamolin, stigmasterol, Δ5-avenasterol, and Δ7-avenasterol (-9.6 to -10.7 kcal/mol) were the most efficient ligand for interaction and binding with COX-2. The known fatty acid also showed binding efficiency with COX-2 to some extent (-6.0 to -8.4 kcal/mol). In summary, it is evident that SO may be one of promising traditional medicines that we could use in the prevention and management of diseases associated with oxidative stress and inflammation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Molecular Docking Simulation , Sesame Oil/pharmacology , Animals , Humans , Oxidative Stress/drug effects , Sesame Oil/analysis , Sesame Oil/chemistry
20.
Biotechnol Appl Biochem ; 66(3): 434-444, 2019 May.
Article in English | MEDLINE | ID: mdl-30801842

ABSTRACT

Ponicidin, an ent-kaurane diterpenoid derived from Rabdosia rubescens, exhibits antitumor activities against several types of cancers. This review summarizes the botanical sources, biological activities, and biopharmaceutical profile of ponicidin. Additionally, a molecular docking study has been undertaken to correlate the interaction of this diterpenoid with biomacromolecules found in the literature. For this purpose, an up-to-date (till December 2018) literature survey was conducted using a number of databases such as PubMed, Science Direct, Web of Science, Scopus, the American Chemical Society, Clinicaltrials.gov, and Google Scholar. Findings suggest that ponicidin exerts antioxidant and anticancer activity in various test systems, including experimental animals and cultured cancer cells. Research findings revealed that anticancer mechanisms of ponicidin include antioxidant/oxidative stress induction, cytotoxic, apoptotic inductive, chemosensitizer, antiangiogenic, and antiproliferative effects. In silico study suggests that 5ITD (PI3K) was the best protein with which ponicidin interacts to exert its anticancer effect. In conclusion, ponicidin might be a promising plant-derived cancer chemotherapeutic agent.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Diterpenes/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/chemistry , Antioxidants/isolation & purification , Apoptosis/drug effects , Binding Sites/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/chemistry , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isodon/chemistry , Molecular Conformation , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...