Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(32): e2303395, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37727069

ABSTRACT

Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.


Subject(s)
Induced Pluripotent Stem Cells , Mechanotransduction, Cellular , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/metabolism , Epigenesis, Genetic , RNA/metabolism
3.
Mol Ther Methods Clin Dev ; 17: 556-567, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32258218

ABSTRACT

Photobiomodulation (PBM) stimulates different types of stem cells to migrate, proliferate, and differentiate in vitro and in vivo. However, little is known about the effects of PBM on the differentiation of embryonic stem cells (ESCs) toward the otic lineage. Only a few reports have documented the in vitro differentiation of ESCs into inner-ear hair cells (HCs) due to the complexity of HCs compared with other target cell types. In this study, we determined the optimal condition to differentiate the ESCs into the otic organoid using different culture techniques and PBM parameters. The efficiency of organoid formation within the embryoid body (EB) was dependent on the cell density of the hanging drop. PBM, using 630 nm wavelength light-emitting diodes (LEDs), further improved the differentiation of inner-ear hair cell-like cells coupled with reactive oxygen species (ROS) overexpression. Transcriptome analysis showed the factors that are responsible for the effect of PBM in the formation of otic organoids, notably, the downregulation of neural development-associated genes and the hairy and enhancer of split 5 (Hes5) gene, which inhibits the differentiation of prosensory cells to hair cells. These data enrich the current differentiation protocols for generating inner-ear hair cells.

4.
J Vet Sci ; 18(4): 547-549, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-27515263

ABSTRACT

Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS.


Subject(s)
Disorder of Sex Development, 46,XY/diagnosis , Dog Diseases/diagnosis , Molecular Diagnostic Techniques/veterinary , Receptors, Peptide , Receptors, Transforming Growth Factor beta , Animals , Disorder of Sex Development, 46,XY/genetics , Dog Diseases/genetics , Dogs , Male , Molecular Diagnostic Techniques/methods
5.
Asian-Australas J Anim Sci ; 30(3): 439-445, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27165032

ABSTRACT

OBJECTIVE: Production of alpha-1,3-galactosyltransferase (αGT)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous αGT knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce αGT-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. METHODS: Miniature pig fibroblasts were transfected with αGT gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous αGT gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-α-1,3-galactose, an epitope produced by αGT. Using magnetic activated cell sorting, cells with monoallelic disruption of αGT were removed. Remaining cells with LOH carrying biallelic disruption of αGT were used for the second round NT to produce homozygous αGT gene-targeted piglets. RESULTS: Monoallelic mutation of αGT gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous αGT gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous αGT knockout piglets. CONCLUSION: The present study demonstrates that the time required for the production of αGT-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.

6.
In Vitro Cell Dev Biol Anim ; 52(7): 736-41, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27142766

ABSTRACT

Tumor suppressor p53 plays a critical role in the regulation of cell cycle and apoptosis in mammals. Mutations of p53 often cause various cancers. Murine models have improved our understanding on tumorigenesis associated with p53 mutations. However, mice and humans are different in many ways. For example, the short lifespans of mice limit the clinical application of the data obtained from this species. Porcine model could be an alternative as pigs share many anatomical and physiological similarities with humans. Here, we modified the expression levels of p53 messenger RNA (mRNA) and protein in porcine fetal fibroblasts using a combination of gene targeting and RNA interference. First, we disrupted the p53 gene to produce p53 knockout (KO) cells. Second, the p53 shRNA expression vector was introduced into fibroblasts to isolate p53 knockdown (KD) cells. We obtained p53 KO, KD, and KO + KD fibroblasts which involve p53 KO and KD either separately or simultaneously. The mRNA expression of p53 in p53 KO fibroblasts was similar to that in the wild-type control. However, the mRNA expression levels of p53 in KD and KO + KD cells were significantly decreased. The p53 protein level significant reduced in p53 KD. Interestingly, no p53 protein was detected in KO + KD, suggesting a complete reduction of the protein by synergistic effect of KO and KD. This study demonstrated that various expression levels of p53 in porcine fibroblasts could be achieved by gene targeting and RNA interference. Moreover, complete abolishment of protein expression is feasible using a combination of gene targeting and RNA interference.


Subject(s)
Gene Expression Regulation/genetics , RNA Interference , Tumor Suppressor Protein p53/biosynthesis , Animals , Fibroblasts/metabolism , Gene Knockout Techniques , Gene Targeting , Heterozygote , Humans , Mice , Mutation , Swine , Tumor Suppressor Protein p53/genetics
7.
Mol Cells ; 38(1): 65-74, 2015 Jan 31.
Article in English | MEDLINE | ID: mdl-25518929

ABSTRACT

Carbohydrate antigens expressed on pig cells are considered to be major barriers in pig-to-human xenotransplantation. Even after α1,3-galactosyltransferase gene knock-out (GalT-KO) pigs are generated, potential non-Gal antigens are still existed. However, to the best of our knowledge there is no extensive study analyzing N-glycans expressed on the GalT-KO pig tissues or cells. Here, we identified and quantified totally 47 N-glycans from wild-type (WT) and GalT-KO pig fibroblasts using mass spectrometry. First, our results confirmed the absence of galactose-alpha-1,3-galactose (α-Gal) residue in the GalT-KO pig cells. Interestingly, we showed that the level of overall fucosylated N-glycans from GalT-KO pig fibroblasts is much higher than from WT pig fibroblasts. Moreover, the relative quantity of the N-glycolylneuraminic acid (NeuGc) antigen is slightly higher in the GalT-KO pigs. Thus, this study will contribute to a better understanding of cellular glycan alterations on GalT-KO pigs for successful xenotransplantation.


Subject(s)
Fibroblasts/enzymology , Galactosyltransferases/genetics , Neuraminic Acids/metabolism , Polysaccharides/isolation & purification , Animals , Cell Membrane/metabolism , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/immunology , Galactosyltransferases/metabolism , Gene Knockout Techniques , Mass Spectrometry , Swine
8.
Biochem Biophys Res Commun ; 452(4): 901-5, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25193705

ABSTRACT

Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia/genetics , Disease Models, Animal , Gene Targeting/methods , Mutation/genetics , Nuclear Transfer Techniques , Swine, Miniature/genetics , Animals , Humans , Swine
9.
Biochem Biophys Res Commun ; 424(4): 765-70, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22809505

ABSTRACT

Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A→T), 16062 (T→C), and 16135 (G→A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.


Subject(s)
Cloning, Organism , DNA, Mitochondrial/genetics , Nuclear Transfer Techniques , Swine, Miniature/genetics , Animals , Base Sequence , DNA, Mitochondrial/analysis , DNA, Mitochondrial/chemistry , Fibroblasts/metabolism , Molecular Sequence Data , Nucleic Acid Conformation , Oocytes/metabolism , Swine
10.
Cell Reprogram ; 14(4): 353-63, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22775484

ABSTRACT

In this study, we examined whether Hanganutziu-Deicher (H-D) antigens are important as an immunogenic non-α1,3-galactose (Gal) epitope in pigs with a disrupted α1,3-galactosyltransferase gene. The targeting efficiency of the AO blood genotype was achieved (2.2%) in pig fibroblast cells. A total of 1800 somatic cell nuclear transfer (SCNT) embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. The α1,3-galactosyltransferase activity in lung, liver, spleen, and testis of heterozygote α1,3-galactosyltransferase gene knockout (GalT-KO) pigs was significantly decreased, whereas brain and heart showed very low decreasing levels of α1,3-galactosyltransferase activity when compared to those of control. Enzyme-linked lectinosorbent assay showed that the heterozygote GalT-KO pig had more sialylα2,6- and sialylα2,3-linked glycan than the control. Furthermore, the heart, liver, and kidney of the heterozygote GalT-KO pig had a higher N-glycolylneuraminic acid (Neu5Gc) content than the control, whereas the lung of the heterozygote GalT-KO pig had Neu5Gc content similar to the control. Collectively, the data strongly indicated that Neu5Gc is a more critical xenoantigen to overcoming the next acute immune rejection in pig to human xenotransplantation.


Subject(s)
Animals, Genetically Modified/genetics , Antigens, Heterophile , Cloning, Organism , Galactosyltransferases , Gene Knockdown Techniques , Neuraminic Acids , Nuclear Transfer Techniques , Animals , Humans , Swine , Swine, Miniature , Transplantation, Heterologous
11.
Zygote ; 20(1): 9-15, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22217670

ABSTRACT

Undifferentiated stem cells may support a greater development of cloned embryos compared with differentiated cell types due to their ease of reprogramming during the nuclear transfer (NT) process. Hence, stem cells may be more suitable as nuclear donor cells for NT procedures than are somatic cells. Embryonic germ (EG) cells are undifferentiated stem cells that are isolated from cultured primordial germ cells (PGC) and can differentiate into several cell types. In this study, the in vitro development of NT embryos using porcine EG cells and their derivative neural precursor (NP) cells was investigated, thus eliminating any variation in genetic differences. The rates of fusion did not differ between NT embryos from EG and NP cells; however, the rate of cleavage in NT embryos derived from EG cells was significantly higher (p < 0.05) than that from NP cells (141/247 [57.1%] vs. 105/228 [46.1%]). Similarly, the rate of blastocyst development was significantly higher (P < 0.05) in NT using EG cells than the rate using NP cells (43/247 [17.4%] vs. 18/228 [7.9%]). The results obtained from the present study in pigs demonstrate a reduced capability for nuclear donor cells to be reprogrammed following the differentiation of porcine EG cells. Undifferentiated EG cells may be more amenable to reprogramming after reconstruction compared with differentiated somatic cells.


Subject(s)
Embryonic Development , Germ Cells/cytology , Neural Stem Cells/cytology , Nuclear Transfer Techniques , Animals , Biomarkers , Cell Differentiation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Genetic Variation , Germ Cells/metabolism , Neural Stem Cells/metabolism , Oocytes/cytology , Oocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Swine , Tissue Culture Techniques
12.
In Vitro Cell Dev Biol Anim ; 47(4): 283-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21359816

ABSTRACT

Epigenetic modification influences reprogramming and subsequent development of somatic cell nuclear transfer (SCNT) embryos. Such modification includes an increase in histone acetylation. Histone deacetylase inhibitors (HDACi), such as trichostatin A (TSA) and valproic acid (VPA), have been known to maintain a high cellular level of histone acetylation. Hence, treatment of nuclear transfer embryos with HDACi may increase the efficiency of cloning. The present study attempted direct comparison of TSA and VPA with regard to the potency of enhancement of in vitro development in porcine SCNT embryos. Reconstructed oocytes using fetal fibroblasts were cultured in PZM-3 containing no HDACi (control), 5 mM VPA, or 50 nM TSA for 24 h, and another 5 d thereafter without HDACi. The frequency of blastocyst formation was significantly higher (P<0.05) in embryos treated with VPA than the frequencies with TSA and without HDACi (125/306, 40.8% vs. 94/313, 30.2% vs. 80/329, 23.4%). In addition, VPA treatment significantly increased (P<0.05) the number of inner cell mass (ICM) cells compared with the control (15.6 ± 1.7 vs. 10.8 ± 2.6), whereas no differences were observed between the TSA treatment and control groups (12.9 ± 3.0 vs. 10.8 ± 2.6). The present study demonstrates that VPA enhances in vitro development of porcine SCNT embryos, particularly by an increase in blastocyst formation and in the number of ICM cells, suggesting that VPA may be more potent than TSA in supporting developmental competence of cloned embryos.


Subject(s)
Embryonic Development/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Nuclear Transfer Techniques , Valproic Acid/pharmacology , Acetylation/drug effects , Animals , Embryonic Development/physiology , In Vitro Techniques , Microscopy, Fluorescence , Reproductive Techniques, Assisted , Swine
13.
Theriogenology ; 75(5): 933-9, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21196043

ABSTRACT

Animals with a targeted disruption of genes can be produced by somatic cell nuclear transfer (SCNT). However, difficulties in clonal selection of somatic cells with a targeted mutation often result in heterogeneous nuclear donor cells, including gene-targeted and non-targeted cells, and impose a risk of producing undesired wildtype cloned animals after SCNT. In addition, the efficiency of cloning by SCNT has remained extremely low. Most cloned embryos die in utero, and the few that develop to term show a high incidence of postnatal death and abnormalities. In the present study, resurrection of an alpha-1,3-galactosyltransferase (αGT) gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts was attempted. Three cloned piglets were produced from the first round of SCNT, including one stillborn and two who died immediately after birth due to respiratory distress syndrome and cardiac dysfunction. Among the three piglets, two were confirmed to be αGT gene-targeted. Fibroblasts derived from postmortem ear skin biopsies were used as nuclear donor cells for the second round of SCNT, and a piglet was produced. As expected, PCR and Southern analyses confirmed that the piglet produced from recloning was αGT gene-targeted. Currently, the piglet is fourteen months of age, and no overt health problems have been observed. Results from the present study demonstrate that loss of an invaluable animal, such as a gene-targeted miniature pig, may be rescued by recloning, with assurance of the desired genetic modification.


Subject(s)
Cloning, Organism/veterinary , Galactosyltransferases/genetics , Nuclear Transfer Techniques/veterinary , Swine, Miniature , Animals , Blotting, Southern/veterinary , Cloning, Organism/methods , Ear , Embryo Transfer/veterinary , Female , Fibroblasts/ultrastructure , Gene Targeting/veterinary , Oocytes/physiology , Oocytes/ultrastructure , Polymerase Chain Reaction/veterinary , Pregnancy , Swine
14.
Spine (Phila Pa 1976) ; 36(3): E155-63, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21124262

ABSTRACT

STUDY DESIGN: In vivo study of a rat spinal cord injury model. OBJECTIVES: To develop complete transection model of thoracic spinal cord using a polymer sheet and a microtube relevant for delayed transplantation of stem cells. SUMMARY OF BACKGROUND DATA: Stem cell transplantation for the regeneration of spinal cord injuries has used animal models. However, current models suffer from inflammation and leakage, which lessens their usefulness in studying delayed stem cell transplantation. METHODS: Thoracic spinal cord at T9 level of adult Sprague-Dawley rats was exposed and a 50:50 sheet of poly(D,L-lactic-coglycolic acid) was inserted, exposed spinal cord was completely transected, and collagen was filled between the gap between the proximal and distal stumps of transected spinal cord. A microtube was placed and fixed between the polymer surfaces facing each other. Behavior testing, magnetic resonance imaging, and myelography were performed to characterize the new complete transection with a gap formation and polymer insertion (GAP) model and to compare the GAP model with the control models. Human mesenchymal stem cells (hMSCs) were transplanted into 3 models and immunohistochemistry and western blot were performed. RESULTS: The inserted poly(D,L-lactic-coglycolic acid) sheet was completely disappeared 10 weeks after operation, but the inserted microtube remained firmly fixed in its original position. Myelography of the GAP model showed no leakage of contrast medium around the injured spinal cord, whereas magnetic resonance imaging of the severe contusion and simple transection models showed some leakage of contrast medium. Immunohistochemistry and western blot after hMSCs transplantation indicated that transplanted hMSCs survived and migrated well in the GAP model, and the deposition of inflammatory cells in GAP model was less than a simple transection model or severe contusion model. CONCLUSION: The developed GAP model is more relevant for delayed transplantation of stem cells for the study of regeneration of spinal cord injury of rats.


Subject(s)
Disease Models, Animal , Spinal Cord Injuries/pathology , Spinal Cord Injuries/surgery , Stem Cell Transplantation/methods , Animals , Lactic Acid/administration & dosage , Polyglycolic Acid/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer , Rats , Rats, Sprague-Dawley , Thoracic Vertebrae/pathology , Thoracic Vertebrae/surgery , Time Factors
15.
Biochem Biophys Res Commun ; 400(4): 667-72, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20816662

ABSTRACT

This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.


Subject(s)
Animals, Genetically Modified/genetics , CD59 Antigens/genetics , Embryo, Mammalian/cytology , Germ Cells/metabolism , Nuclear Transfer Techniques , Swine/genetics , Animals , Humans
16.
Zygote ; 17(2): 101-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19063773

ABSTRACT

Human complement regulatory protein hCD46 may reduce the hyperacute rejection (HAR) in pig-to-human xenotransplantation. In this study, an hCD46 gene was introduced into porcine embryonic germ (EG) cells. Treatment of human serum did not affect the survival of hCD46-transgenic EG cells, whereas the treatment significantly reduced the survival of non-transgenic EG cells (p < 0.01). The transgenic EG cells presumably capable of alleviating HAR were transferred into enucleated oocytes. Among 235 reconstituted oocytes, 35 (14.9%) developed to the blastocyst stage. Analysis of individual embryos indicated that 80.0% (28/35) of embryos contained the transgene hCD46. The result of the present study demonstrates resistance of hCD46-transgenic EG cells against HAR, and the usefulness of the transgenic approach may be predicted by this cytolytic assessment prior to actual production of transgenic pigs. Subsequently performed EG cell nuclear transfer gave rise to hCD46-transgenic embryos. Further study on the transfer of these embryos to recipients may produce hCD46-transgenic pigs.


Subject(s)
Animals, Genetically Modified , Blastocyst/physiology , Membrane Cofactor Protein/genetics , Oocytes/physiology , Swine/genetics , Animals , Embryonic Development , Gene Transfer Techniques , Humans , Membrane Cofactor Protein/metabolism , Nuclear Transfer Techniques , Transgenes
17.
Mol Cells ; 25(3): 358-67, 2008 May 31.
Article in English | MEDLINE | ID: mdl-18443423

ABSTRACT

The embryonic germ cell (EGCs) of mice is a kind of pluripotent stem cell that can be generated from pre- and post-migratory primordial germ cells (PGCs). Most previous studies on DNA methylation of EGCs were restricted to 12.5 days post coitum (dpc). This study was designed to establish and characterize murine EGC lines from migrated PGCs as late as 13.5 dpc and to estimate the degrees of methylation of their imprinted genes as well as of the non-imprinted locus, Oct4, using an accurate and quantitative method of measurement. We established five independent EGC lines from post migratory PGCs of 11.5-13.5 dpc from C57BL/6xDBA/2 F1 hybrid mouse fetuses. All the EGCs exhibited the typical features of pluripotent cells including hypomethylation of the Oct4 regulatory region. We examined the methylation status of three imprinted genes; Igf2, Igf2r and H19 in the five EGC lines using bisulfite genomic sequencing analysis. Igf2r was almost unmethylated in all the EGC lines irrespective of the their sex and stage of isolation; Igf2 and H19 were more methylated than Igf2r, especially in male EGCs. Moreover, EGCs derived at 13.5 dpc exhibited higher levels of DNA methylation than those from earlier stages. These results suggest that in vitro derived EGCs acquire different epigenotypes from their parental in vivo migratory PGCs, and that sex-specific de novo methylation occurs in the Igf2 and H19 genes of EGCs.


Subject(s)
DNA Methylation , Embryo, Mammalian/cytology , Genomic Imprinting , Germ Cells/metabolism , Pluripotent Stem Cells/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Line , Cells, Cultured , Female , Genomics , Germ Cells/cytology , Male , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells/cytology , Regulatory Elements, Transcriptional , Sulfites/chemistry
18.
In Vitro Cell Dev Biol Anim ; 44(3-4): 57-62, 2008.
Article in English | MEDLINE | ID: mdl-18266050

ABSTRACT

Gene targeting is a precise manipulation of endogenous gene by introduction of exogenous DNA and has contributed greatly to the elucidation of gene functions. Conventional gene targeting has been achieved through a use of embryonic stem cells. However, such procedure is often long, tedious, and expensive. This study was carried out to develop a simple procedure of gene targeting using E. coli recombinase A (RecA) and modified single-stranded oligonucleotides. The new procedure was attempted to modify X-linked hypoxanthine phosphoribosyltransferase (HPRT) gene in mouse embryos. The single-stranded oligonucleotide to target an exon 3 of HPRT was 74 bases in length including phosphorothioate linkages at each terminus to be resistant against exonucleases when introduced into zygotes. The oligonucleotide sequence was homologous to the target gene except a single nucleotide that induces a mismatch between an introduced oligonucleotide and endogenous HPRT gene. Endogenous repairing of such mismatch would give rise to the conversion of TAT to TAG stop codon thereby losing the function of the target gene. Before an introduction into zygotes, single-stranded oligonucleotides were bound to RecA to enhance the homologous recombination. The RecA-oligonucleotide complex was microinjected into the pronucleus of zygote. Individual microinjected embryos developed to the blastocyst stage were analyzed for the expected nucleotide conversion using polymerase chain reaction (PCR) and subsequent sequencing. The conversion of TAT to TAG stop codon was detected in three embryos among 48 tested blastocysts (6.25% in frequency). The result suggests that the gene targeting was feasible by relatively easier and direct method.


Subject(s)
DNA, Single-Stranded/genetics , Gene Targeting/methods , Oligonucleotides/genetics , Rec A Recombinases/genetics , Animals , Base Sequence , DNA, Single-Stranded/metabolism , Embryo, Mammalian , Mice , Molecular Sequence Data , Mutation , Oligonucleotides/metabolism , Rec A Recombinases/metabolism , Recombination, Genetic
19.
Cloning Stem Cells ; 9(4): 461-8, 2007.
Article in English | MEDLINE | ID: mdl-18154507

ABSTRACT

Embryonic germ (EG) cells are undifferentiated stem cells isolated from cultured primordial germ cells (PGC). Porcine EG cell lines with capacities of both in vitro and in vivo differentiation have been established. Because EG cells can be cultured indefinitely in an undifferentiated state, they may be more suitable for nuclear donor cells in nuclear transfer (NT) than somatic cells that have limited lifespan in primary culture. Use of EG cells could be particularly advantageous to provide an inexhaustible source of transgenic cells for NT. In this study the efficiencies of transgenesis and NT using porcine fetal fibroblasts and EG cells were compared. The rate of development to the blastocyst stage was significantly higher in EG cell NT than somatic cell NT (94 of 518, 18.2% vs. 72 of 501, 14.4%). To investigate if EG cells can be used for transgenesis in pigs, green fluorescent protein (GFP) gene was introduced into porcine EG cells. Nuclear transfer embryos using transfected EG cells gave rise to blastocysts (29 of 137, 21.2%) expressing GFP based on observation under fluorescence microscope. The results obtained from the present study suggest that EG cell NT may have advantages over somatic cell NT, and transgenic pigs may be produced using EG cells.


Subject(s)
Embryonic Stem Cells/cytology , Genetic Techniques , Germ Cells/cytology , Nuclear Transfer Techniques , Animals , Animals, Genetically Modified , Blastocyst , Cell Culture Techniques/methods , Cloning, Organism/methods , DNA/metabolism , Gene Transfer Techniques , Green Fluorescent Proteins/metabolism , Swine , Transgenes
20.
Mol Reprod Dev ; 73(10): 1221-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16868927

ABSTRACT

A critical problem of transgenic livestock production is uncontrollable constitutive expression of the foreign gene, which usually results in serious physiological disturbances in transgenic animals. One of the best solutions for this problem may be use of controllable gene expression system. In this study, using retrovirus vectors designed to express the enhanced green fluorescent protein (EGFP) gene under the control of the tetracycline-inducible promoter, we examined whether the expression of the transgene could be controllable in fibroblast cells and nuclear transfer (NT) embryos of porcine. Transformed fibroblast cells were cultured in medium supplemented with or without doxycycline (a tetracycline analog) for 48 hr, and the induction efficiency was measured by comparing EGFP gene expression using epifluorescence microscopy and Western and Northern blot analyses. After the addition of doxycycline, EGFP expression increased up to 17-fold. The nuclei of transformed fibroblast cells were transferred into enucleated oocytes. Fluorescence emission data revealed strong EGFP gene expression in embryos cultured with doxycycline, but little or no expression in the absence of the antibiotic. Our results demonstrate the successful regulation of transgene expression in porcine nuclear transfer embryos, and support the application of an inducible expression system in transgenic pig production to solve the inherent problems of side-effects due to constitutive expression of the transgene.


Subject(s)
Embryo, Mammalian/metabolism , Gene Expression Regulation , Nuclear Transfer Techniques , Retroviridae/genetics , Tetracycline/pharmacology , Transgenes/genetics , Animals , Doxycycline/pharmacology , Embryo, Mammalian/chemistry , Embryo, Mammalian/drug effects , Fetus , Fibroblasts/chemistry , Fibroblasts/metabolism , Gene Expression/drug effects , Genetic Vectors , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Sus scrofa , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...