Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(18): eadl6409, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701215

ABSTRACT

Ultrafast photoinduced melting provides an essential platform for studying nonequilibrium phase transitions by linking the kinetics of electron dynamics to ionic motions. Knowledge of dynamic balance in their energetics is essential to understanding how the ionic reaction is influenced by femtosecond photoexcited electrons with notable time lag depending on reaction mechanisms. Here, by directly imaging fluctuating density distributions and evaluating the ionic pressure and Gibbs free energy from two-temperature molecular dynamics that verified experimental results, we uncovered that transient ionic pressure, triggered by photoexcited electrons, controls the overall melting kinetics. In particular, ultrafast nonequilibrium melting can be described by the reverse nucleation process with voids as nucleation seeds. The strongly driven solid-to-liquid transition of metallic gold is successfully explained by void nucleation facilitated by photoexcited electron-initiated ionic pressure, establishing a solid knowledge base for understanding ultrafast nonequilibrium kinetics.

2.
Adv Sci (Weinh) ; : e2308177, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605671

ABSTRACT

Electride possesses electrons localized at interstitial sites without attracting nuclei. It brings outstanding material properties not only originating from its own loosely bounded characteristics but also serving as a quasiatom, which even chemically interacts with other elemental ions. In elemental metals, electride transitions have been reported in alkali metals where valence electrons can easily gain enough kinetic energy to escape nuclei. However, there are few studies on transition metals. Especially iron, the key element of human technology and geophysics, has not been studied in respect of electride formation. In this study, it is demonstrated that electride formation drives the superionic state in iron hydride under high-pressure conditions of the earth's inner core. The electride stabilizes the iron lattice and provides a pathway for hydrogen diffusion by severing the direct interaction between the metal and the volatile element. The coupling between lattice stability and superionicity is triggered near 100 GPa and enhanced at higher pressures. It is shown that the electride-driven superionicity can also be generalized for metal electrides and other rocky planetary cores by providing a fundamental interaction between the electride of the parent metal and doped light elements.

4.
Small ; 20(18): e2308934, 2024 May.
Article in English | MEDLINE | ID: mdl-38161260

ABSTRACT

Exsolution generates metal nanoparticles anchored within crystalline oxide supports, ensuring efficient exposure, uniform dispersion, and strong nanoparticle-perovskite interactions. Increased doping level in the perovskite is essential for further enhancing performance in renewable energy applications; however, this is constrained by limited surface exsolution, structural instability, and sluggish charge transfer. Here, hybrid composites are fabricated by vacuum-annealing a solution containing SrTiO3 photoanode and Co cocatalyst precursors for photoelectrochemical water-splitting. In situ transmission electron microscopy identifies uniform, high-density Co particles exsolving from amorphous SrTiO3 films, followed by film-crystallization at elevated temperatures. This unique process extracts entire Co dopants with complete structural stability, even at Co doping levels exceeding 30%, and upon air exposure, the Co particles embedded in the film oxidize to CoO, forming a Schottky junction at the interface. These conditions maximize photoelectrochemical activity and stability, surpassing those achieved by Co post-deposition and Co exsolution from crystalline oxides. Theoretical calculations demonstrate in the amorphous state, dopant─O bonds become weaker while Ti─O bonds remain strong, promoting selective exsolution. As expected from the calculations, nearly all of the 30% Fe dopants exsolve from SrTiO3 in an H2 environment, despite the strong Fe─O bond's low exsolution tendency. These analyses unravel the mechanisms driving the amorphous exsolution.

5.
Phys Rev Lett ; 131(23): 236903, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134786

ABSTRACT

SrAs_{3} is a unique nodal-line semimetal that contains only a single nodal ring in the Brillouin zone, uninterrupted by any trivial bands near the Fermi energy. We performed axis-resolved optical reflection measurements on SrAs_{3} and observed that the optical conductivity exhibits flat absorption up to 129 meV in both the radial and axial directions, confirming the robustness of the universal power-law behavior of the nodal ring. The axis-resolved optical conductivity, in combination with theoretical calculations, further reveals fundamental properties beyond the flat absorption, including the overlap energy of the topological bands, the spin-orbit coupling gap along the nodal ring, and the geometric properties of the nodal ring such as the average ring radius, ring ellipticity, and velocity anisotropy. In addition, our temperature-dependent measurements revealed a spectral weight transfer between intraband and interband transitions, indicating a possible violation of the optical sum rule within the measured energy range.

6.
IUCrJ ; 10(Pt 6): 700-707, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37772598

ABSTRACT

Photoinduced nonequilibrium phase transitions have stimulated interest in the dynamic interactions between electrons and crystalline ions, which have long been overlooked within the Born-Oppenheimer approximation. Ultrafast melting before lattice thermalization prompted researchers to revisit this issue to understand ultrafast photoinduced weakening of the crystal bonding. However, the absence of direct evidence demonstrating the role of orbital dynamics in lattice disorder leaves it elusive. By performing time-resolved resonant X-ray scattering with an X-ray free-electron laser, we directly monitored the ultrafast dynamics of bonding orbitals of Ge to drive photoinduced melting. Increased photoexcitation of bonding electrons amplifies the orbital disturbance to expedite the lattice disorder approaching the sub-picosecond scale of the nonthermal regime. The lattice disorder time shows strong nonlinear dependence on the laser fluence with a crossover behavior from thermal-driven to nonthermal-dominant kinetics, which is also verified by ab initio and two-temperature molecular dynamics simulations. This study elucidates the impact of bonding orbitals on lattice stability with a unifying interpretation on photoinduced melting.

7.
Nat Commun ; 14(1): 4145, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438375

ABSTRACT

Finding d-electron heavy fermion states has been an important topic as the diversity in d-electron materials can lead to many exotic Kondo effect-related phenomena or new states of matter such as correlation-driven topological Kondo insulator. Yet, obtaining direct spectroscopic evidence for a d-electron heavy fermion system has been elusive to date. Here, we report the observation of Kondo lattice behavior in an antiferromagnetic metal, FeTe, via angle-resolved photoemission spectroscopy, scanning tunneling spectroscopy and transport property measurements. The Kondo lattice behavior is represented by the emergence of a sharp quasiparticle and Fano-type tunneling spectra at low temperatures. The transport property measurements confirm the low-temperature Fermi liquid behavior and reveal successive coherent-incoherent crossover upon increasing temperature. We interpret the Kondo lattice behavior as a result of hybridization between localized Fe 3dxy and itinerant Te 5pz orbitals. Our observations strongly suggest unusual cooperation between Kondo lattice behavior and long-range magnetic order.

8.
J Phys Chem Lett ; 14(16): 3884-3890, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37071052

ABSTRACT

Earth's inner core (IC) consists of mainly iron with some light elements. Understanding its structure and related physical properties has been elusive as a result of its required extremely high pressure and temperature conditions. The phase of iron, elastic anisotropy, and density-velocity deficit at the IC have long been questions of great interest. Here, we find that the electron correlation effect is enhanced by oxygen and modifies several important features, including the stability of iron oxides. Oxygen atoms energetically stabilize hexagonal-structured iron at IC conditions and induce elastic anisotropy. Electrical resistivity is much enhanced in comparison to pure hexagonal close-packed (hcp) iron as a result of the enhanced electron correlation effect, supporting the conventional thermal convection model. Moreover, our calculated seismic velocity shows a quantitative match with geologically observed preliminary reference Earth model (PREM) data. We suggest that oxygen is the essential light element to understand and model Earth's IC.

9.
Sci Rep ; 13(1): 2898, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36801928

ABSTRACT

Noble gases possess extremely low reactivity because their valence shells are closed. However, previous studies have suggested that these gases can form molecules when they combine with other elements with high electron affinity, such as fluorine. Radon is a naturally occurring radioactive noble gas, and the formation of radon-fluorine molecules is of significant interest owing to its potential application in future technologies that address environmental radioactivity. Nevertheless, because all isotopes of radon are radioactive and the longest radon half-life is only 3.82 days, experiments on radon chemistry have been limited. Here, we study the formation of radon molecules using first-principles calculations; additionally, possible compositions of radon fluorides are predicted using a crystal structure prediction approach. Similar to xenon fluorides, di-, tetra-, and hexafluorides are found to be stabilized. Coupled-cluster calculations reveal that RnF6 stabilizes with Oh point symmetry, unlike XeF6 with C3v symmetry. Moreover, we provide the vibrational spectra of our predicted radon fluorides as a reference. The molecular stability of radon di-, tetra-, and hexafluoride obtained through calculations may lead to advances in radon chemistry.

10.
Nano Lett ; 23(4): 1481-1488, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36723175

ABSTRACT

Femtosecond laser pulses drive nonequilibrium phase transitions via reaction paths hidden in thermal equilibrium. This stimulates interest to understand photoinduced ultrafast melting processes, which remains incomplete due to challenges in resolving accompanied kinetics at the relevant space-time resolution. Here, by newly establishing a multiplexing femtosecond X-ray probe, we have successfully revealed ultrafast energy transfer processes in confined Au nanospheres. Real-time images of electron density distributions with the corresponding lattice structures elucidate that the energy transfer begins with subpicosecond melting at the specimen boundary earlier than the lattice thermalization, and proceeds by forming voids. Two temperature molecular dynamics simulations uncovered the presence of both heterogeneous melting with the melting front propagation from surface and grain boundaries and homogeneous melting with random melting seeds and nanoscale voids. Supported by experimental and theoretical results, we provide a comprehensive atomic-scale picture that accounts for the ultrafast laser-induced melting and evaporation kinetics.

11.
Nat Commun ; 13(1): 7188, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418308

ABSTRACT

Anomalous transport responses, dictated by the nontrivial band topology, are the key for application of topological materials to advanced electronics and spintronics. One promising platform is topological nodal-line semimetals due to their rich topology and exotic physical properties. However, their transport signatures have often been masked by the complexity in band crossings or the coexisting topologically trivial states. Here we show that, in slightly hole-doped SrAs3, the single-loop nodal-line states are well-isolated from the trivial states and entirely determine the transport responses. The characteristic torus-shaped Fermi surface and the associated encircling Berry flux of nodal-line fermions are clearly manifested by quantum oscillations of the magnetotransport properties and the quantum interference effect resulting in the two-dimensional behaviors of weak antilocalization. These unique quantum transport signatures make the isolated nodal-line fermions in SrAs3 desirable for novel devices based on their topological charge and spin transport.

12.
Acc Chem Res ; 55(19): 2811-2820, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36129235

ABSTRACT

ConspectusThermoelectric (TE) materials have received much attention because of their ability to convert heat energy to electrical energy. At a given temperature T, the efficiency of a TE material for this energy conversion is measured by the figure of merit zT, which is related to the thermopower (or Seebeck coefficient) S, the thermal conductivity κ, and the electrical conductivity σ of the TE material as zT = (S2σT)/κ. Bi2Q3 and PbQ (Q = Se, Te) are efficient TE materials with high zT, although they are not ecofriendly and their stability is poor at high temperature. In principle, a TE material can have a high zT if it has a low thermal conductivity and a high electrical conductivity, but the latter condition is hardly met in a real material because the parameters S, σ and κ have a conflicting dependence on material properties. The difficulty in searching for TE materials of high zT is even more exasperated because the relationship between the thermopower S and the carrier density n (hereafter, the S-vs-n relationship) for the well-known hole-doped samples of BiCuSeO showed that the hole carriers responsible for their thermopower are associated largely with the electronic states lying within ∼0.5 eV of its valence band maximum (VBM). Thus, the states governing the TE properties lie in the "skin-deep" region from the VBM. For electron-doped TE systems, the electron carriers responsible for their thermopower should also be associated with the electronic states lying within ∼0.5 eV of the conduction band minimum (CBM). This makes it difficult to predict TE materials of high zT. One faces a similar skin-deep phenomenon in searching for superconductors of high transition temperature because the transition from a normal metallic to a superconducting state involves the normal metallic states in the vicinity of the Fermi level EF. Other skin-deep phenomena in metallic compounds include the formation of charge density wave (CDW), which involves the electronic states in the vicinity of their Fermi levels. For magnetic materials of transition-metal ions, the preferred orientation of their spin moments is a skin-deep phenomenon because it is governed by the interaction between the highest-occupied and the lowest unoccupied d-states of these ions. In the present work we probe the issues concerning how to find the possible range of thermopower expected for a given TE material and hence how to recognize what experimental values of thermopower are expected or unusual. For these purposes, we analyze the accumulated S and n data on the three well-studied TE materials, Bi2Q3, PbQ, and BiCuQO (Q = Se, Te), as representative examples, in terms of the ideal theoretical S-vs-n relationships, which we determine for their defect-free Bi2Q3, PbQ, and BiCuQO structures using density functional theory (DFT) calculations under the rigid band approximation. We find that the general trends in the experimental S-vs-n relationships are reasonably well explained by the calculated S-vs-n relationships, and the carrier densities covering these relationships are associated with the states lying within ∼0.5 eV from their band edges confirming the skin-deep nature of their thermoelectric properties. Despite the fact that these TE materials are not one-dimensional (1D) in structure, they mostly possess sharp density-of-state peaks around their band edges because their band dispersions have a hidden 1D character so their thermopower is generally high in magnitude.

13.
J Am Chem Soc ; 144(37): 16726-16731, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36095292

ABSTRACT

We demonstrated the synthesis of a conductive two-dimensional metal-organic framework (MOF) thin film by single-step all-vapor-phase chemical vapor deposition (CVD). The synthesized large-area thin film of Cu3(C6O6)2 has an edge-on-orientation with high crystallinity. Cu3(C6O6)2 thin film-based microdevices were fabricated by e-beam lithography and had an electrical conductivity of 92.95 S/cm. Synthesis of conductive MOF thin films by the all-vapor-phase CVD will enable fundamental studies of physical properties and may help to accomplish practical applications of conductive MOFs.

14.
Nat Mater ; 21(10): 1144-1149, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35927432

ABSTRACT

Van der Waals heterostructures with two-dimensional magnets offer a magnetic junction with an atomically sharp and clean interface. This attribute ensures that the magnetic layers maintain their intrinsic spin-polarized electronic states and spin-flipping scattering processes at a minimum level, a trait that can expand spintronic device functionalities. Here, using a van der Waals assembly of ferromagnetic Fe3GeTe2 with non-magnetic hexagonal boron nitride and WSe2 layers, we demonstrate electrically tunable, highly transparent spin injection and detection across the van der Waals interfaces. By varying an electrical bias, the net spin polarization of the injected carriers can be modulated and reversed in polarity, which leads to sign changes of the tunnelling magnetoresistance. We attribute the spin polarization reversals to sizable contributions from high-energy localized spin states in the metallic ferromagnet, so far inaccessible in conventional magnetic junctions. Such tunability of the spin-valve operations opens a promising route for the electronic control of next-generation low-dimensional spintronic device applications.

15.
Inorg Chem ; 61(9): 3843-3850, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35195990

ABSTRACT

Density functional theory calculations were carried out to probe the nature of the electronic structure change in TiPO4 before and after its spin-Peierls distortion at 74.5 K, which is characterized by the dimerization in the chains of Ti3+ (d1) ions present in TiPO4. These calculations suggest strongly that the electronic state of TiPO4 is magnetic insulating before the distortion, but becomes nonmagnetic insulating after the distortion. Consistent with this suggestion, the phonon dispersion relations calculated for TiPO4 show that the undistorted TiPO4 is stable, while the distorted TiPO4 is not, if each Ti3+ ion has a spin moment, and that the opposite is true if each Ti3+ ion has no spin moment. These observations suggest that the driving force for the spin-Peierls distortion is the formation of direct metal-metal bonds leading to the dimerized chains of Ti3+ ions. The abrupt change in the electronic structures from a magnetic insulating state to a nonmagnetic insulating state explains why the spin-Peierls distortion of TiPO4 exhibits a first-order character. Although the two electronic states of TiPO4 before and after the distortion have a band gap, the substantial spin-Peierls distortion is found to enhance the thermoelectric properties of TiPO4.

16.
Nano Lett ; 22(3): 1159-1166, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35088595

ABSTRACT

Despite the enormous applications of and fundamental scientific interest in amorphous hollow-silica nanostructures (h-SiNSs), their synthesis in crystal-like nonspherical polygonal architectures is challenging. Herein, we present a facile one-shot synthetic procedure for various unconventional h-SiNSs with controllable surface curvatures (concave, convex, or angular), symmetries (spherical, polygonal, or Janus), and interior architectures (open or closed walls) by the addition of a metal salt and implementing kinetic handles of silica precursor (silanes/ammonia) concentrations and reverse-micellar volume. During the silica growth, we identified the key role of transiently in situ crystallized metal coordination complexes as a nanopolyhedral "ghost template", which provides facet-selective interactions with amino-silica monomers and guides the differential silica growth that produces different h-SiNSs. Additionally, crystal-like well-defined polygonal h-SiNSs with flat surfaces, assembled as highly ordered close-packed octahedral mesoscale materials (ca. 3 µm) where h-SiNSs with different nanoarchitectures act as building units (ca. 150 nm) to construct customizable cavities and nanospaces, differ from conventionally assembled materials.

17.
Nano Lett ; 22(3): 1059-1066, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35084865

ABSTRACT

The orbital degree of freedom, strongly coupled with the lattice and spin, is an important factor when designing correlated functions. Whether the long-range orbital order is stable at reduced dimensions and, if not, what the critical thickness is remains a tantalizing question. Here, we report the melting of orbital ordering, observed by controlling the dimensionality of the canonical eg1 orbital system LaMnO3. Epitaxial films are synthesized with vertically aligned orbital ordering planes on an orthorhombic substrate, so that reducing film thickness changes the two-dimensional planes into quasi-one-dimensional nanostrips. The orbital order appears to be suppressed below the critical thickness of about six unit cells by changing the characteristic phonon modes and making the Mn d orbital more isotropic. Density functional calculations reveal that the electronic energy instability induced by bandwidth narrowing via the dimensional crossover and the interfacial effect causes the absence of orbital order in the ultrathin thickness.

18.
ACS Appl Mater Interfaces ; 13(51): 61809-61817, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-34910869

ABSTRACT

Metal thin films have been widely used as conductors in semiconductor devices for several decades. However, the resistivity of metal thin films such as Cu and TiN increases substantially (>1000%) as they become thinner (<10 nm) when using high-density integration to improve device performance. In this study, the resistivities of MAX-phase V2AlC films grown on sapphire substrates exhibited a significantly weaker dependence on the film thickness than conventional metal films that resulted in a resistivity increase of only 30%, as the V2AlC film thickness decreased from approximately 45 to 5 nm. The resistivity was almost identical for film thicknesses of 10-50 nm. The small change in the resistivity of V2AlC films with decreasing film thickness originated from the highly ordered crystalline quality and a small electron mean free path (11-13.6 nm). Thus, MAX-phase thin films have great potential for advanced metal technology applications to overcome the current scaling limitations of semiconductor devices.

19.
Sci Adv ; 7(52): eabj8552, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34936432

ABSTRACT

Ultrafast light-matter interactions enable inducing exotic material phases by promoting access to kinetic processes blocked in equilibrium. Despite potential opportunities, actively using nonequilibrium kinetics for material discovery is limited by the poor understanding on intermediate states of driven systems. Here, using single-pulse time-resolved imaging with x-ray free-electron lasers, we found intermediate states of photoexcited bismuth nanoparticles that showed kinetically reversed surface ordering during ultrafast melting. This entropy-lowering reaction was further investigated by molecular dynamics simulations to reveal that observed kinetics were thermodynamically buried in equilibrium, which emphasized the critical role of electron-mediated ultrafast free-energy modification in inducing exotic material phases. This study demonstrated that ultrafast photoexcitations of electrons provide an efficient strategy to induce hidden material phases by overcoming thermodynamic barriers via nonequilibrium reaction pathways.

20.
Sci Rep ; 11(1): 17567, 2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34475450

ABSTRACT

Magnetic anisotropy energy (MAE) is one of the most important properties in two-dimensional magnetism since the magnetization in two dimension is vulnerable to the spin rotational fluctuations. Using density functional theory calculation, we show that perpendicular electric field dramatically enhances the in-plane and out-of-plane magnetic anisotropies in Fe3GeTe2 and Fe4GeTe2 monolayers, respectively, allowing the change of easy axis in both systems. The changes of the MAE under the electric field are understood as the result of charge redistribution inside the layer, which is available due to the three-dimensional (3D) network of Fe atoms in the monolayers. As a result, we suggest that due to the unique structure of FenGeTe2 compounds composed by peculiar 3D networks of metal atoms, the MAE can be dramatically changed by the external perpendicular electric field.

SELECTION OF CITATIONS
SEARCH DETAIL
...