Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39026716

ABSTRACT

Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, we showed that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca 2+ mobilization, microtubule polymerization, and degranulation. In this study, we extend the findings to human mast cells (LAD2) and present data indicating that CPC's mechanism of action centers on its positively-charged quaternary nitrogen in its pyridinium headgroup. CPC's inhibitory effect is independent of signaling platform receptor architecture. Tyrosine phosphorylation events are a trigger of Ca 2+ mobilization necessary for degranulation. CPC inhibits global tyrosine phosphorylation in Ag-stimulated mast cells. Specifically, CPC inhibits tyrosine phosphorylation of specific key players Syk kinase and LAT, a substrate of Syk. In contrast, CPC does not affect Lyn kinase phosphorylation. Thus, CPC's root mechanism is electrostatic disruption of particular tyrosine phosphorylation events essential for signaling. This work outlines the biochemical mechanisms underlying the effects of CPC on immune signaling and allows the prediction of CPC effects on cell types, like T cells, that share similar signaling elements.

2.
Food Chem Toxicol ; 186: 114547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408634

ABSTRACT

People are exposed to high concentrations of antibacterial agent cetylpyridinium chloride (CPC) via food and personal care products, despite little published information regarding CPC effects on eukaryotes. Here, we show that low-micromolar CPC exposure, which does not cause cell death, inhibits mitochondrial ATP production in primary human keratinocytes, mouse NIH-3T3 fibroblasts, and rat RBL-2H3 immune mast cells. ATP inhibition via CPC (EC50 1.7 µM) is nearly as potent as that caused by canonical mitotoxicant CCCP (EC50 1.2 µM). CPC inhibition of oxygen consumption rate (OCR) tracks with that of ATP: OCR is halved due to 1.75 µM CPC in RBL-2H3 cells and 1.25 µM in primary human keratinocytes. Mitochondrial [Ca2+] changes can cause mitochondrial dysfunction. Here we show that CPC causes mitochondrial Ca2+ efflux from mast cells via an ATP-inhibition mechanism. Using super-resolution microscopy (fluorescence photoactivation localization) in live cells, we have discovered that CPC causes mitochondrial nanostructural defects in live cells within 60 min, including the formation of spherical structures with donut-like cross section. This work reveals CPC as a mitotoxicant despite widespread use, highlighting the importance of further research into its toxicological safety.


Subject(s)
Anti-Infective Agents, Local , Anti-Infective Agents , Mice , Humans , Rats , Animals , Cetylpyridinium/chemistry , Cetylpyridinium/pharmacology , Rodentia , Anti-Infective Agents/pharmacology , Mitochondria , Adenosine Triphosphate
3.
Food Chem Toxicol ; 179: 113980, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549805

ABSTRACT

Cetylpyridinium chloride (CPC) is an antimicrobial used in numerous personal care and janitorial products and food for human consumption at millimolar concentrations. Minimal information exists on the eukaryotic toxicology of CPC. We have investigated the effects of CPC on signal transduction of the immune cell type mast cells. Here, we show that CPC inhibits the mast cell function degranulation with antigen dose-dependence and at non-cytotoxic doses ∼1000-fold lower than concentrations in consumer products. Previously we showed that CPC disrupts phosphatidylinositol 4,5-bisphosphate, a signaling lipid critical for store-operated Ca2+ entry (SOCE), which mediates degranulation. Our results indicate that CPC inhibits antigen-stimulated SOCE: CPC restricts Ca2+ efflux from endoplasmic reticulum, reduces Ca2+ uptake into mitochondria, and dampens Ca2+ flow through plasma membrane channels. While inhibition of Ca2+ channel function can be caused by alteration of plasma membrane potential (PMP) and cytosolic pH, CPC does not affect PMP or pH. Inhibition of SOCE is known to depress microtubule polymerization, and here we show that CPC indeed dose-dependently shuts down formation of microtubule tracks. In vitro data reveal that CPC inhibition of microtubules is not due to direct CPC interference with tubulin. In summary, CPC is a signaling toxicant that targets Ca2+ mobilization.


Subject(s)
Cetylpyridinium , Mast Cells , Humans , Cetylpyridinium/metabolism , Cetylpyridinium/pharmacology , Calcium/metabolism , Signal Transduction , Pharmaceutical Preparations/metabolism , Calcium Signaling
4.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292883

ABSTRACT

Cetylpyridinium chloride (CPC) is an antimicrobial used in numerous personal care and janitorial products and food for human consumption at millimolar concentrations. Minimal information exists on the eukaryotic toxicology of CPC. We have investigated the effects of CPC on signal transduction of the immune cell type mast cells. Here, we show that CPC inhibits the mast cell function degranulation with antigen dose-dependence and at non-cytotoxic doses ∼1000-fold lower than concentrations in consumer products. Previously we showed that CPC disrupts phosphatidylinositol 4,5-bisphosphate, a signaling lipid critical for store-operated Ca 2+ entry (SOCE), which mediates degranulation. Our results indicate that CPC inhibits antigen-stimulated SOCE: CPC restricts Ca 2+ efflux from endoplasmic reticulum, reduces Ca 2+ uptake into mitochondria, and dampens Ca 2+ flow through plasma membrane channels. While inhibition of Ca 2+ channel function can be caused by alteration of plasma membrane potential (PMP) and cytosolic pH, CPC does not affect PMP or pH. Inhibition of SOCE is known to depress microtubule polymerization, and here we show that CPC indeed dose-dependently shuts down formation of microtubule tracks. In vitro data reveal that CPC inhibition of microtubules is not due to direct CPC interference with tubulin. In summary, CPC is a signaling toxicant that targets Ca 2+ mobilization.

5.
Toxicol Appl Pharmacol ; 405: 115205, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32835763

ABSTRACT

Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits Ca2+ mobilization in human Jurkat T cells. However, the biochemical mechanism behind the Ca2+ dampening has yet to be elucidated. Three-dimensional super-resolution microscopy reveals that TCS induces mitochondrial swelling, in line with and extending the previous finding of TCS inhibition of mitochondrial membrane potential via its proton ionophoric activity. Inhibition of plasma membrane potential (PMP) by the canonical depolarizer gramicidin can inhibit mast cell function. However, use of the genetically encoded voltage indicators (GEVIs) ArcLight (pH-sensitive) and ASAP2 (pH-insensitive), indicates that TCS does not disrupt PMP. In conjunction with data from a plasma membrane-localized, pH-sensitive reporter, these results indicate that TCS, instead, induces cytosolic acidification in mast cells and T cells. Acidification of the cytosol likely inhibits Ca2+ influx by uncoupling the STIM1/ORAI1 interaction that is required for opening of plasma membrane Ca2+ channels. These results provide a mechanistic explanation of TCS disruption of Ca2+ influx and, thus, of immune cell function.


Subject(s)
Anti-Infective Agents/toxicity , Calcium/metabolism , Cytoplasm/drug effects , Mast Cells/drug effects , T-Lymphocytes/drug effects , Triclosan/toxicity , Calcium Channels/metabolism , Cell Degranulation/drug effects , Cell Line , Cell Membrane/drug effects , Cytoplasm/metabolism , Humans , Hydrogen-Ion Concentration , Mast Cells/metabolism , Membrane Potentials/drug effects , Mitochondrial Swelling/drug effects , T-Lymphocytes/metabolism
6.
J Appl Toxicol ; 39(12): 1672-1690, 2019 12.
Article in English | MEDLINE | ID: mdl-31429102

ABSTRACT

Humans are exposed to the antimicrobial agent triclosan (TCS) through use of TCS-containing products. Exposed tissues contain mast cells, which are involved in numerous biological functions and diseases by secreting various chemical mediators through a process termed degranulation. We previously demonstrated that TCS inhibits both Ca2+ influx into antigen-stimulated mast cells and subsequent degranulation. To determine the mechanism linking the TCS cytosolic Ca2+ depression to inhibited degranulation, we investigated the effects of TCS on crucial signaling enzymes activated downstream of the Ca2+ rise: protein kinase C (PKC; activated by Ca2+ and reactive oxygen species [ROS]) and phospholipase D (PLD). We found that TCS strongly inhibits PLD activity within 15 minutes post-antigen, a key mechanism of TCS mast cell inhibition. In addition, experiments using fluorescent constructs and confocal microscopy indicate that TCS delays antigen-induced translocations of PKCßII, PKCδ and PKC substrate myristoylated alanine-rich C-kinase. Surprisingly, TCS does not inhibit PKC activity or overall ability to translocate, and TCS actually increases PKC activity by 45 minutes post-antigen; these results are explained by the timing of both TCS inhibition of cytosolic Ca2+ (~15+ minutes post-antigen) and TCS stimulation of ROS (~45 minutes post-antigen). These findings demonstrate that it is incorrect to assume that all Ca2+ -dependent processes will be synchronously inhibited when cytosolic Ca2+ is inhibited by a toxicant or drug. The results offer molecular predictions of the effects of TCS on other mammalian cell types, which share these crucial signal transduction elements and provide biochemical information that may underlie recent epidemiological findings implicating TCS in human health problems.


Subject(s)
Anti-Infective Agents/toxicity , Calcium/metabolism , Cell Degranulation/drug effects , Mast Cells/drug effects , Phospholipase D/antagonists & inhibitors , Triclosan/toxicity , Cell Line , Humans , Mast Cells/metabolism , Mast Cells/pathology , Mast Cells/physiology , Myristoylated Alanine-Rich C Kinase Substrate/metabolism , Protein Kinase C/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
7.
J Appl Toxicol ; 39(3): 473-484, 2019 03.
Article in English | MEDLINE | ID: mdl-30374992

ABSTRACT

Mast cells comprise a physiologically and toxicologically important cell type that is ubiquitous among species and tissues. Mast cells undergo degranulation, in which characteristic intracellular granules fuse with the plasma membrane and release many bioactive substances, such as enzymes ß-hexosaminidase and tryptase. Activity of mast cells in the toxicology model organism, zebrafish, has been monitored via tryptase release and cleavage of substrate N-α-benzoyl-dl-Arg-p-nitroanilide (BAPNA). An extensively used in vitro mast cell model for studying toxicant mechanisms is the RBL-2H3 cell line. However, instead of tryptase, granule contents such as ß-hexosaminidase have usually been employed as RBL-2H3 degranulation markers. To align RBL-2H3 cell toxicological studies to in vivo mast cell studies using zebrafish, we aimed to develop an RBL-2H3 tryptase assay. Unexpectedly, we discovered that tryptase release from RBL-2H3 cells is not detectable, using BAPNA substrate, despite optimized assay that can detect as little as 1 ng tryptase. Additional studies performed with another substrate, tosyl-Gly-Pro-Lys-pNA, and with an enzyme-linked immunosorbent assay, revealed a lack of tryptase protein released from stimulated RBL-2H3 cells. Furthermore, none of the eight rat tryptase genes (Tpsb2, Tpsab1, Tpsg1, Prss34, Gzmk, Gzma, Prss29, Prss41) is expressed in RBL-2H3 cells, even though all are found in RBL-2H3 genomic DNA and even though ß-hexosaminidase mRNA is constitutively expressed. Therefore, mast cell researchers should utilize ß-hexosaminidase or another reliable marker for RBL-2H3 degranulation studies, not tryptase. Comparative toxicity testing in RBL-2H3 cells in vitro and in zebrafish mast cells in vivo will require use of a degranulation reporter different from tryptase.


Subject(s)
Mast Cells/enzymology , Tryptases/analysis , Animals , Cell Degranulation , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Mast Cells/drug effects , Mice , Rats , Tryptases/genetics , Tryptases/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL