Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542720

ABSTRACT

The purpose of this work was to examine the effects of potassium poly-γ-glutamate (PGA-K) on mice fed a high-fat diet consisting of 60% of total calories for 12 weeks. PGA-K administration reduced the increase in body weight, epididymal fat, and liver weight caused by a high-fat diet compared to the obese group. The triglyceride, low-density lipoprotein cholesterol and high-density lipoprotein cholesterol levels, which are blood lipid indicators, were significantly increased in the obese group but were significantly decreased in the PGA-K-treated group. The administration of PGA-K resulted in a significant inhibition of pro-inflammatory cytokines, including tumor necrosis factor α and interleukin 6. Moreover, the levels of leptin and insulin, which are insulin resistance indicators, significantly increased in the obese group but were significantly decreased in the PGA-K-treated group. These results suggest that PGA-K exhibits a protective effect against obesity induced by a high-fat diet, underscoring its potential as a candidate for obesity treatment.


Subject(s)
Bacillus subtilis , Diet, High-Fat , Isoflavones , Soybean Proteins , Mice , Animals , Diet, High-Fat/adverse effects , Mice, Obese , Obesity/drug therapy , Obesity/etiology , Cholesterol , Glutamates , Mice, Inbred C57BL
2.
Sci Rep ; 13(1): 18884, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919369

ABSTRACT

Exposure to particulate matter (PM) causes mitochondrial dysfunction and lung inflammation. The cyclooxygenase-2 (COX-2) pathway is important for inflammation and mitochondrial function. However, the mechanisms by which glucocorticoid receptors (GRs) suppress COX-2 expression during PM exposure have not been elucidated yet. Hence, we examined the mechanisms underlying the dexamethasone-mediated suppression of the PM-induced COX-2/prostaglandin E2 (PGE2) pathway in A549 cells. The PM-induced increase in COX-2 protein, mRNA, and promoter activity was suppressed by glucocorticoids; this effect of glucocorticoids was antagonized by the GR antagonist RU486. COX-2 induction was correlated with the ability of PM to increase reactive oxygen species (ROS) levels. Consistent with this, antioxidant treatment significantly abolished COX-2 induction, suggesting that ROS is involved in PM-mediated COX-2 induction. We also observed a low mitochondrial membrane potential in PM-treated A549 cells, which was reversed by dexamethasone. Moreover, glucocorticoids significantly enhanced Bcl-2/GR complex formation in PM-treated A549 cells. Glucocorticoids regulate the PM-exposed induction of COX-2 expression and mitochondrial dysfunction and increase the interaction between GR and Bcl-2. These findings suggest that the COX-2/PGE2 pathway and the interaction between GR and Bcl-2 are potential key therapeutic targets for the suppression of inflammation under PM exposure.


Subject(s)
Dexamethasone , Glucocorticoids , Humans , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dexamethasone/pharmacology , A549 Cells , Particulate Matter/toxicity , Dinoprostone/metabolism , Reactive Oxygen Species , Inflammation
3.
Antioxidants (Basel) ; 12(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627586

ABSTRACT

Particulate matter (PM) induces and augments oxidative stress and inflammation, leading to respiratory diseases. Although Artemisia gmelinii Weber ex Stechm has antioxidant and anti-inflammatory effects, there are no reports on whether Artemisia gmelinii extract (AGE) regulates lung inflammation in a PM-induced model. Thus, we investigated the protective effects of AGE using a PM-induced mouse lung inflammation model. AGE significantly decreased the expression of inflammatory chemokines, neutrophil extracellular trap formation, and the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Furthermore, AGE attenuated lung inflammation through the suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, while promoting the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway in lung tissues. Concordant with these observations, AGE suppressed inflammatory cytokines, chemokines, reactive oxygen species, NETosis, myeloperoxidase, and neutrophil elastase by decreasing the mRNA expression of High mobility group box 1, Runt-related transcription factor 1, and Kruppel-like factor 6 in differentiated HL-60 cells. In summary, our data demonstrated that AGE suppresses PM-induced neutrophil infiltration, lung damage, and pulmonary inflammation by suppressing NF-κB/MAPK signaling pathways and enhancing the NRF2/HO-1 signaling pathway. These findings suggest that AGE administration is an effective approach for preventing and treating PM-induced respiratory inflammation.

4.
J Med Food ; 24(11): 1213-1221, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34792393

ABSTRACT

Immunosuppression occurs in response to a variety of external antigens. However, various immune cells and cytokines can activate the immune system. In this study, it was found that fermented deer velvet (FD) and fermented Eleutherococcus senticosus (FE) extract (FDE) mixtures regulated the immunity of animals that underwent induced immunosuppression through forced swimming exercise (FSE). Seven mouse treatment groups were included in the experiment: normal controls, FSE controls, positive controls (FSE+red ginseng 300 mg/kg body weight), FD200 (FSE+FD 200 mg/kg body weight), FE200 (FSE+FE 200 mg/kg body weight), FDE50 (FSE+FDE 50 mg/kg body weight), and FDE200 (FSE+FDE 200 mg/kg body weight). Oral intake of experimental and control substances lasted for 2 weeks. Oral FDE intake increased cell counts for major histocompatibility complex (MHC) I, MHC II, CD4(+) T cells, and CD8(+) T cells compared with controls. Moreover, FDE increased Th1 (interleukin [IL]-2 and interferon gamma) cytokine proliferation, T cell proliferation, IL-12 and IL-15 production, and natural killer cell activity compared with controls. In addition, FDE inhibited Th2 cytokines (IL-4, IL-6, IL-10, and tumor necrosis factor alpha) and nitric oxide production, increased B cell proliferation and leukocyte count, and promoted immunoglobulin A and G serum levels compared with controls. Thus, the finding that FDE increased immune function in an immunosuppression model suggests that FDE has immunomodulatory capacity.


Subject(s)
Deer , Eleutherococcus , Animals , Cytokines/genetics , Immunosuppression Therapy , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Swimming
5.
Phytomedicine ; 21(5): 602-6, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24252334

ABSTRACT

AIM: The stem bark of Maackia amurensis has been used as folk medicine for the treatment of cancer, cholecystitis, arthritis, and hyperthyroidism in females. In this study we examined the effects of the ethyl acetate fraction obtained from the 70% ethanol extract of M. amurensis and tectoridin, an active constituent isolated from the ethyl acetate fraction on thyroid and estrogen hormone activity. METHODS: The effect of the ethanolic extract of M. amurensis stem bark on thyroid hormone activity was evaluated using thyroid hormone responsive-luciferase assay. We isolated tectoridin from the ethyl acetate fraction using a recrystallization method. T-screen assays were used to confirm thyroid hormone activity. The estrogenic activity of the ethyl acetate fraction of M. amurensis and tectoridin was evaluated by estrogen responsive-luciferase assay and estrogen receptor alpha regulation as compared to 17ß-estradiol. RESULTS: Both the ethyl acetate fraction and tectoridin activated thyroid-responsive reporters and increased thyroid hormone-dependent proliferation of rat pituitary GH3 cells, indicating modulation of thyroid hormone receptors. In parallel, the estrogenic activity of the fraction and tectoridin were characterized in a transient transfection system using estrogen-responsive luciferase plasmids in MCF-7 cells. The ethyl acetate fraction and tectoridin activated reporter gene expression and decreased the estrogen receptor protein level. CONCLUSIONS: These data indicate that tectoridin acts as a weak phytoestrogen as well as a thyroid hormone-like agent by activating both estrogen and thyroid hormone receptors.


Subject(s)
Estrogen Receptor Modulators/isolation & purification , Isoflavones/pharmacology , Maackia/chemistry , Receptors, Thyroid Hormone/agonists , Animals , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Estrogen Receptor alpha/metabolism , Humans , Isoflavones/isolation & purification , MCF-7 Cells , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal , Rats , Transcriptional Activation/drug effects
6.
J Agric Food Chem ; 61(8): 1878-83, 2013 Feb 27.
Article in English | MEDLINE | ID: mdl-23362941

ABSTRACT

To increase the oral bioavailability of curcumin and genistein, we fabricated nanostructured lipid carriers (NLCs), and the impact of these carriers on bioaccessibility of curcumin and genistein was studied. Entrapment efficiency was more than 75% for curcumin and/or genistein-loaded NLCs. Solubility of curcumin and/or genistein in simulated intestinal medium (SIM) was >75% after encapsulating within NLCs which otherwise was <20%. Both curcumin and genistein have shown good stability (≥85%) in SIM and simulated gastric medium (SGM) up to 6 h. Coloading of curcumin and genistein had no adverse effect on solubility and stability of each molecule. Instead, coloading increased loading efficiency and the cell growth inhibition in prostate cancer cells. Collectively, these results have shown that coloaded lipid based carriers are promising vehicles for oral delivery of poorly bioaccessible molecules like curcumin and genistein.


Subject(s)
Curcumin/pharmacokinetics , Drug Carriers/chemistry , Genistein/pharmacokinetics , Lipids/chemistry , Nanostructures/chemistry , Prostatic Neoplasms/drug therapy , Biological Availability , Cell Proliferation/drug effects , Curcumin/chemistry , Digestion , Genistein/chemistry , Humans , Male , Prostatic Neoplasms/physiopathology , Solubility
7.
Pharmazie ; 67(11): 947-50, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23210246

ABSTRACT

Cimicifuga racemosa extracts have long been used to treat female reproductive disorders both in Asia and Europe. Here in this study, we examined the possible estrogen receptor (ER)alpha effects of Cimicifuga heracleifolia var. bifida ethanol extract (C-Ex), which has been used traditionally in Asia, in MCF-7 cells. The activity of C-Ex was characterized in a transient transfection system, using ERa and estrogen-responsive luciferase plasmids in HEK 293 cells and endogenous target genes were studied in MCF-7 cells. C-Ex failed to activate ERalpha and at a concentration of 0.005-0.5 mg/ml as examined by reporter activity. In addition, no statistically significant antiestrogenic activity was observed. However, to our interest, C-Ex enhanced expression of VEGF at 0.5 mg/ml concentration and repressed ERalpha both at the mRNA and protein levels in MCF-7 cells. These results suggested that C-Ex does not activate or inactivate ERalpha in a direct manner, but the extracts may affect factors in ER signal transduction pathway.


Subject(s)
Breast Neoplasms/drug therapy , Cimicifuga/chemistry , Receptors, Estrogen/drug effects , Blotting, Western , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Down-Regulation/drug effects , Estrogen Receptor alpha/drug effects , Estrogen Receptor alpha/genetics , Female , HEK293 Cells , Humans , Luciferases/genetics , MCF-7 Cells , Plant Extracts/pharmacology , Real-Time Polymerase Chain Reaction , Transcriptional Activation/drug effects , Vascular Endothelial Growth Factor A/genetics
8.
Biochem Biophys Res Commun ; 418(2): 319-23, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22266320

ABSTRACT

Hypoxia and the androgen receptor (AR) play important roles in the development and progression of prostate cancer. In this study, the combined effects of dihydrotestosterone (DHT) and hypoxia on AR-mediated transactivation were investigated. Hypoxia alone did not induce a detectable ARE-mediated response in the absence of DHT. DHT-induced AR transcriptional activity was dramatically increased by hypoxia or ectopic expression of HIF-1α, as determined by introducing ARE-responsive reporter plasmids into LNCaP prostate cancer cells. The secretion of VEGF was enhanced by the combination of hypoxia and DHT as compared to each treatment alone. These effects were not due to increased expression of the AR or HIF-1α as a result of hypoxia and DHT treatment. These results provide evidence that hypoxia may stimulate as yet unknown factors, which further stimulate AR signal transduction pathways.


Subject(s)
Androgens/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Receptors, Androgen/genetics , Transcriptional Activation , Cell Hypoxia/drug effects , Cell Line, Tumor , Dihydrotestosterone/pharmacology , Genes, Reporter , Humans , Ligands , Luciferases/genetics , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL