Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 275: 116570, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38878517

ABSTRACT

Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver ß-galactosidase and ß-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra. Together with the docking calculations we previously reported for α-1-C-alkyl-DAB derivatives, we designed and synthesized a series of 6-C-alkyl-DMDP derivatives with very simple alkyl chains. The inhibition potency of these derivatives was enhanced by increasing the length of the side chain, and maintained at nanomolar scale inhibitions of bovine liver ß-glucosidase and ß-galactosidase after the alkyl groups are longer than eight or ten carbons for the (6R)-C-alkyl-DMDP derivatives and their 6S epimers, respectively. Molecular docking calculations indicated that each series of 6-C-alkyl-DMDP derivatives resides in the same active site of ß-glucosidase or ß-galactosidase with basically similar binding conformations, and their C-6 long alkyl chains extend outwards along the hydrophobic groove with similar orientations. The increasing inhibitions of ß-glucosidase and ß-galactosidase with the number of carbon atoms in the side chains may be explained by improved adaptability of longer alkyl chains in the hydrophobic grooves. In addition, the lower ß-glucosidase and ß-galactosidase inhibitions of (6S)-C-alkyl-DMDP derivatives than their C-6 R stereoisomers can be attributed to the misfolding of their alkyl chains and resulted decreased adaptability in the hydrophobic groove. The work reported herein is valuable for design and development of more potent and selective inhibitors of ß-galactosidase and ß-glucosidase, which have potential in treatment of lysosomal storage diseases. Furthermore, part of the 6-C-alkyl-DMDP derivatives and their enantiomers were also tested as potential anti-cancer agents; all the compounds tested were found with moderate cytotoxic effects on MKN45 cells, which would indicate potential applications of these iminosugars in development of novel anticancer agents.

2.
Org Biomol Chem ; 21(16): 3453-3464, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37039337

ABSTRACT

A series of iso-allo-DNJ and L-isoDALDP derivatives were synthesized from dithioacetal 16 with sequential and highly diastereoselective Ho and Henry reactions, and aziridinium intermediate-mediated ring rearrangement as key steps. Glycosidase inhibition assay found four of them as selective α-glucosidase inhibitors, and the less substituted compound 30 showed more potent α-glucosidase inhibition (IC50 = 9.3 µM) than the others. Molecular docking study revealed different docking modes of the iso-allo-DNJ and L-isoDALDP derivatives from their parent compounds, and also the similarity of compound 30 to isofagomine.


Subject(s)
Glycoside Hydrolase Inhibitors , alpha-Glucosidases , alpha-Glucosidases/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases , Molecular Structure
3.
Org Biomol Chem ; 21(13): 2729-2741, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36916165

ABSTRACT

A series of DAB-peptide and DAB-dipeptide derivatives were synthesized from D-tartrate-derived nitrone 18. The DAB peptides 16 are derivatives of trans,trans-3,4-dihydroxy-L-proline. Glycosidase inhibition assay found four of them to be weak and selective bovine liver ß-galactosidase inhibitors, and the C-2' methyl substituted compound 23b showed the most potent ß-galactosidase inhibition (IC50 = 0.66 µM). Molecular docking studies revealed different docking modes of compound 23b compared to those of other DAB-peptides, and partial similarity of compound 23b to DGJ.


Subject(s)
Dipeptides , Glycoside Hydrolases , Animals , Cattle , Molecular Docking Simulation , C-Peptide , beta-Galactosidase , Structure-Activity Relationship , Molecular Structure
4.
Eur J Med Chem ; 244: 114852, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36332547

ABSTRACT

A series of C-6 fluorinated casuarine derivatives have been synthesized via organocatalytic stereoselective α-fluorination of iminosugar-based aldehydes or direct nucleophilic fluorination of polyhydroxylated pyrrolizidines. Glycosidase assays against various glycosidases allowed systematic structure-activity relationship (SAR) study using molecular docking calculations. Introduction of fluorine atom(s) at C-6 position removed the trehalase and maltase inhibitory activities of all casuarine derivatives, and greatly increased their specificity towards amyloglucosidase. Inhibition of the fluorinated casuarines depended on the configuration of C-6 fluorine, of which 6-deoxy-6-epi-6-fluoro-casuarine (24) was found approximately 40-fold potent than its parent compound 6-epi-casuarine (2) as a potent and specific inhibitor of amyloglucosidase. Molecular docking calculations showed that replacement of the C-6 hydroxyls by fluorine atom(s) removed the original interactions with trehalase, but helped to reinforce the binding with amyloglucosidase via newly established fluorine related hydrogen bonding or untypical anion-π interactions. To further investigate the quantitative SARs of casuarine derivatives, the CoMFA and CoMSIA models on amyloglucosidase were established, indicating the dominating effect of electrostatic field in amyloglucosidase inhibition. The 3D-QSAR models were validated to be reliable and can be used for further optimization of casuarine-related iminosugars, as well as design and development of anti-diabetic and immunomodulatory drugs.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Trehalase , Molecular Docking Simulation , Glucan 1,4-alpha-Glucosidase/metabolism , Trehalase/metabolism , Fluorine , Quantitative Structure-Activity Relationship , Structure-Activity Relationship , Glycoside Hydrolases
5.
Molecules ; 27(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35684388

ABSTRACT

Tetrachlorinated phthalimide analogues bearing a boron-pinacolate ester group were synthesised via two synthetic routes and evaluated in their glycosidase modulating and anticancer properties, with a view to use them in boron neutron capture therapy (BNCT), a promising radiation type for cancer, as this therapy does little damage to biological tissue. An unexpected decarbonylation/decarboxylation to five 2,3,4,5-tetrachlorobenzamides was observed and confirmed by X-ray crystallography studies, thus, giving access to a family of borylated 2,3,4,5-tetrachlorobenzamides. Biological evaluation showed the benzamide drugs to possess good to weak potencies (74.7-870 µM) in the inhibition of glycosidases, and to have good to moderate selectivity in the inhibition of a panel of 18 glycosidases. Furthermore, in the inhibition of selected glycosidases, there is a core subset of three animal glycosidases, which is always inhibited (rat intestinal maltase α-glucosidase, bovine liver ß-glucosidase and ß-galactosidase). This could indicate the involvement of the boron atom in the binding. These glycosidases are targeted for the management of diabetes, viral infections (via a broad-spectrum approach) and lysosomal storage disorders. Assays against cancer cell lines revealed potency in growth inhibition for three molecules, and selectivity for one of these molecules, with the growth of the normal cell line MCF10A not being affected by this compound. One of these molecules showed both potency and selectivity; thus, it is a candidate for further study in this area. This paper provides numerous novel aspects, including expedited access to borylated 2,3,4,5-tetrachlorophthalimides and to 2,3,4,5-tetrachlorobenzamides. The latter constitutes a novel family of glycosidase modulating drugs. Furthermore, a greener synthetic access to such structures is described.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Animals , Boron/chemistry , Boron/pharmacology , Boron Compounds/pharmacology , Cattle , Glycoside Hydrolases , Rats
6.
Eur J Med Chem ; 238: 114499, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35675756

ABSTRACT

Enantiomeric series of C-4 hydroxymethyl depleted DAB and LAB derivatives (trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines), designed as ß-glucosidase inhibitors by molecular docking calculations, have been synthesized in 2 steps from l- and d-tartaric acid derived enantiomeric cyclic nitrones 29L and 29D, respectively. Both series of C-4 hydroxymethyl depleted DAB and LAB derivatives 28Da-e and 28La-e, which are structurally trans, trans-2-C-aryl-3,4-dihydroxypyrrolidines, were potent and selective human lysosome acid ß-glucosidase (GCase) inhibitors, of which 28Dd and 28Ld with C-4 biphenyls showed the highest potency relative to other compounds of the same series. The work provided a series of pyrrolidine-type potent and selective GCase inhibitors with minimal hydroxyl substitutions and synthetic procedures. Structure-activity relationship study revealed not only the rationality of hydrophobic and aromatic properties of the binding sites in GCase, but also the great potential of pyrrolidine family in development of new GCase inhibitors with minimized undesirable side effects. The results indicate a strategy for the development of drugs for the treatment of related diseases targeting acid ß-glucosidase, such as Gaucher disease and Parkinson's disease.


Subject(s)
Gaucher Disease , Enzyme Inhibitors/chemistry , Gaucher Disease/drug therapy , Glucosylceramidase , Humans , Molecular Docking Simulation , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , beta-Glucosidase
7.
J Org Chem ; 87(11): 7291-7307, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35584209

ABSTRACT

C-7-fluorinated derivatives of two important polyhydroxylated pyrrolizidines, casuarine and australine, were synthesized with organocatalytic stereoselective α-fluorination of aldehydes as the key step. The strategy is extensively applicable to some synthetically challenging fluorinated iminosugars and carbohydrates. The docking studies indicated that the potent inhibitions of trehalase and amyloglucosidase by the fluorinated polyhydroxylated pyrrolizidines are due to the interaction modes dominated by fluorine atoms in these iminosugars with the amino acids' residues of the corresponding enzymes. Steady interactions were established between the C-7 fluoride and a hydrophobic pocket in amyloglucosidase by untypical anion-π interactions. These unexpected docking modes and related structure-activity relationship studies emphasize the value of fluorination in the design of polyhydroxylated pyrrolizidine glycosidase inhibitors.


Subject(s)
Glucan 1,4-alpha-Glucosidase , Glycoside Hydrolases , Alkaloids , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrroles , Pyrrolizidine Alkaloids
8.
Eur J Med Chem ; 233: 114230, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35255314

ABSTRACT

Two series of C-4 alkylated and arylated LAB (1,4-dideoxy-1,4-imino-l-arabinitol) and DAB (1,4-dideoxy-1,4-imino-d-arabinitol) derivatives, synthesized in 6 steps from enantiomeric cyclic nitrones derived from l- and d-tartaric acid, were designed and assayed against various glycosidases. C-4 Branched LAB alkyl and phenyl derivatives 5La-d showed potent α-glucosidase inhibition, particularly against human lysosomal acid α-glucosidase; C-4 DAB derivatives 5Da-d, with small alkyl groups, showed enhanced inhibition of rat intestinal maltase and sucrase. Both enantiomeric C-4 arylated derivatives 5Lf-l and 5Df-l exhibited potent and selective α-glucosidase inhibition; and compound 5Li with a para-electron donating group (EDG) on its C-4 aryl group, showed the most potent rat intestinal sucrase inhibition. Docking studies showed similar hydrogen bonding modes for the iminosugar skeletons of DAB (1) and LAB (2) with ntMGAM,. While C-4 alkylated LAB derivatives showed high similarity in their binding modes with the active site of ntMGAM, binding modes of the DAB derivatives relied on the size of C-4 alkyl groups with methyl and butyl showed the optimum interactions. Furthermore, C-4 arylation improved the interactions of LAB derivatives with enzymes by T-shaped π-π stack with residue Trp-406; for C-4 arylated DAB derivatives, the π-π stack interactions were found with distinct planar distortions caused by EDGs or EWGs on the C-4 aryls. The results reported herein provided insights for the design and development of DAB and LAB related α-glucosidase inhibitors, and may also contribute to the future development of anti-viral, anti-diabetic and anti-Pompe disease drugs.


Subject(s)
Glycoside Hydrolases , Lithium , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Radioisotopes , Rats
9.
Carbohydr Res ; 511: 108491, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34953389

ABSTRACT

A set of bicyclic iminosugar C-glycosides, based on an octahydrofuro[3,2-b]pyridine motif, has been synthesized from a C-allyl iminosugar exploiting a debenzylative iodocycloetherification and an iodine nucleophilic displacement as the key steps. The halogen allowed the introduction of a range of aglycon moieties of different sizes bearing several functionalities such as alcohol, amine, amide and triazole. In these carbohydrate mimics the fused THF ring forces the piperidine to adopt a flattened 4C1 conformation according to NMR and DFT calculations studies. In their deprotected form, these bicycles were assayed on a panel of 23 glycosidases. The iminosugars displaying hydrophobic aglycon moieties proved to be superior glycosidase inhibitors, leading to a low micromolar inhibition of human lysosome ß-glucosidase (compound 11; IC50 = 2.7 µM) and rice α-glucosidase (compound 10; IC50 = 7.7 µM). Finally, the loose structural analogy of these derivatives with Thiamet G, a potent OGA bicyclic inhibitor, was illustrated by the weak OGA inhibitory activity (Ki = 140 µM) of iminosugar 5.


Subject(s)
Glycoside Hydrolases , Imino Sugars , 1-Deoxynojirimycin/analogs & derivatives , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/chemistry , Glycosides/pharmacology , Humans , Imino Sugars/chemistry , Imino Sugars/pharmacology , Pyridines
10.
Org Biomol Chem ; 19(43): 9410-9420, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34668913

ABSTRACT

Four diastereomers belonging to the family of casuarines, including casuarine (1), 6-epi-casuarine (2), 7-epi-casuarine (13) and 6,7-diepi-casuarine (14), have been synthesized from D-arabinose-derived cyclic nitrone 7 and nitrone-derived aldehyde 4 by a stereocomplementary strategy. Glycosidase inhibition comparison showed that 6-epi-casuarine (2) exhibits enhanced inhibition of trehalase (IC50 = 9.7 µM) and 6,7-diepi-casuarine (14) leads to specific inhibition of trehalase.

11.
Eur J Med Chem ; 224: 113716, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34340042

ABSTRACT

5-C-Alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives have been designed and synthesized efficiently from an l-sorbose-derived cyclic nitrone. The DNJ and l-ido-DNJ derivatives with C-5 alkyl chains ranging from methyl to dodecyl were assayed against various glycosidases to study the effect of chain length on enzyme inhibition. Glycosidase inhibition study of DNJ derivatives showed potent and selective inhibitions of α-glucosidase; DNJ derivatives with methyl, pentyl to octyl, undecyl and dodecyl as C-5 branched chains showed significantly improved rat intestinal maltase inhibition. In contrast, most 5-C-alkyl-l-ido-DNJ derivatives were weak or moderate inhibitors of the enzymes tested, with only three compounds found to be potent α-glucosidase inhibitors. Docking studies showed different interaction modes of 5-C-ethyl-DNJ and 5-C-octyl-DNJ with ntMGAM and also different binding modes of 5-C-alkyl-DNJ and 5-C-alkyl-l-ido-DNJ derivatives; the importance of the degree of accommodation of the C-5 substituent in the hydrophobic groove and pocket may account for the variation of glycosidase inhibition in the two series of derivatives. The results reported herein are helpful in the design and development of α-glucosidase inhibitors; this may lead to novel agents for the treatment of viral infection and type II diabetes.


Subject(s)
Glycoside Hydrolase Inhibitors/therapeutic use , Glycoside Hydrolases/metabolism , Molecular Docking Simulation/methods , Glycoside Hydrolase Inhibitors/pharmacology , Humans , Molecular Structure , Structure-Activity Relationship
12.
Molecules ; 25(7)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218360

ABSTRACT

Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) and pochonicine (1) configurations showed potent inhibition of ß-N-acetylhexosaminidases (ß-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right configurations of pyrrolidine ring required for this type of inhibitors.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrrolidines/chemistry , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/chemical synthesis , beta-N-Acetylhexosaminidases/antagonists & inhibitors , Animals , Cyclization , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/metabolism , Rats , Stereoisomerism , beta-N-Acetylhexosaminidases/metabolism
13.
Org Biomol Chem ; 18(5): 999-1011, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31944194

ABSTRACT

N-Substituted derivatives of 1,4-dideoxy-1,4-imino-d-mannitol (DIM), the pyrrolidine core of swainsonine, have been synthesized efficiently and stereoselectively from d-mannose with 2,3:5,6-di-O-isopropylidene DIM (10) as a key intermediate. These N-substituted derivatives include N-alkylated, N-alkenylated, N-hydroxyalkylated and N-aralkylated DIMs with the carbon number of the alkyl chain ranging from one to nine. The obtained 33 N-substituted DIM derivatives were assayed against various glycosidases, which allowed a systematic evaluation of their glycosidase inhibition profiles. Though N-substitution of DIM decreased their α-mannosidase inhibitory activities, some of the derivatives showed significant inhibition of other glycosidases.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Mannitol/analogs & derivatives , Animals , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Humans , Imino Furanoses/chemical synthesis , Imino Furanoses/chemistry , Imino Furanoses/pharmacology , Inhibitory Concentration 50 , Mannitol/chemical synthesis , Mannitol/chemistry , Mannitol/pharmacology , Rats , Swainsonine/chemistry
14.
Org Biomol Chem ; 17(30): 7204-7214, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31317164

ABSTRACT

A series of analogs of the iminosugars 1-deoxynojirimycin (DNJ) and 1-deoxymannojirimycin (DMJ), in which an extra five or six-membered ring has been fused to the C1-C2 bond have been prepared. The synthetic strategy exploits a key 2-keto-C-allyl iminosugar, easily accessible from gluconolactam, which upon Grignard addition and RCM furnishes a bicyclic scaffold that can be further hydroxylated at the C[double bond, length as m-dash]C bond. This strategy furnished DNJ mimics with the piperidine ring locked in a 1C4 conformation with all substituents in axial orientation when fused to a six-membered ring. Addition of an extra ring to DNJ and DMJ motif proved to strongly modify the glycosidase inhibition profile of the parent iminosugars leading to modest inhibitors. The 2-keto-C-allyl iminosugar scaffold was further used to access N-acetylglycosamine analogs via oxime formation.


Subject(s)
1-Deoxynojirimycin/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , beta-Glucosidase/antagonists & inhibitors , 1-Deoxynojirimycin/chemical synthesis , 1-Deoxynojirimycin/chemistry , Animals , Cattle , Coffee/enzymology , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Liver/enzymology , Molecular Conformation , Oryza/enzymology , Structure-Activity Relationship , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...