Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Cell Dev Biol ; 10: 994588, 2022.
Article in English | MEDLINE | ID: mdl-36478736

ABSTRACT

Tsukushi (TSK) proteoglycan dysfunction leads to hydrocephalus, a condition defined by excessive fluid collection in the ventricles and lateral ventricular enlargement. TSK injections into the LV at birth are effective at rescuing the lateral ventricle (LV). TSK regulates the activation of the Wnt signaling to facilitate the proper expansion of the LV and maintain the fate of the neural stem cell lineage. However, the molecular mechanism by which TSK acts on neural stem/progenitor cells (NSCs) during LV development is unknown. We demonstrated that TSK is crucial for the splicing and development-associated gene regulation of GFAP-expressing subventricular zone (SVZ) NSCs. We isolated GFAP-expressing NSCs from the SVZ of wild-type (GFAPGFP/+/TSK+/+) and TSK knock-out (GFAPGFP/+/TSK-/-) mice on postnatal day 3 and compared their transcriptome and splicing profiles. TSK deficiency in NSCs resulted in genome-wide missplicing (alteration in exon usage) and transcriptional dysregulation affecting the post-transcriptional regulatory processes (including splicing, cell cycle, and circadian rhythm) and developmental signaling networks specific to the cell (including Wnt, Sonic Hedgehog, and mTOR signaling). Furthermore, TSK deficiency prominently affected the splicing of genes encoding RNA and DNA binding proteins in the nervous SVZ and non-nervous muscle tissues. These results suggested that TSK is involved in the maintenance of correct splicing and gene regulation in GFAP-expressing NSCs, thereby protecting cell fate and LV development. Hence, our study provides a critical insight on hydrocephalus development.

3.
Life Sci Alliance ; 5(8)2022 08.
Article in English | MEDLINE | ID: mdl-35470240

ABSTRACT

Microtubule (MT) dynamics are modulated through the coordinated action of various MT-associated proteins (MAPs). However, the regulatory mechanisms underlying MT dynamics remain unclear. We show that the MAP7 family protein Map7D2 stabilizes MTs to control cell motility and neurite outgrowth. Map7D2 directly bound to MTs through its N-terminal half and stabilized MTs in vitro. Map7D2 localized prominently to the centrosome and partially on MTs in mouse N1-E115 neuronal cells, which expresses two of the four MAP7 family members, Map7D2 and Map7D1. Map7D2 loss decreased the resistance to the MT-destabilizing agent nocodazole without affecting acetylated/detyrosinated stable MTs, suggesting that Map7D2 stabilizes MTs via direct binding. In addition, Map7D2 loss increased the rate of random cell migration and neurite outgrowth, presumably by disturbing the balance between MT stabilization and destabilization. Map7D1 exhibited similar subcellular localization and gene knockdown phenotypes to Map7D2. However, in contrast to Map7D2, Map7D1 was required for the maintenance of acetylated stable MTs. Taken together, our data suggest that Map7D2 and Map7D1 facilitate MT stabilization through distinct mechanisms in cell motility and neurite outgrowth.


Subject(s)
Microtubules , Neurons , Animals , Cell Movement/genetics , Mice , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neurons/metabolism , Nocodazole/metabolism , Nocodazole/pharmacology
4.
Elife ; 112022 03 15.
Article in English | MEDLINE | ID: mdl-35289744

ABSTRACT

Neuronal abundance and thickness of each cortical layer are specific to each area, but how this fundamental feature arises during development remains poorly understood. While some of area-specific features are controlled by intrinsic cues such as morphogens and transcription factors, the exact influence and mechanisms of action by cues extrinsic to the cortex, in particular the thalamic axons, have not been fully established. Here, we identify a thalamus-derived factor, VGF, which is indispensable for thalamocortical axons to maintain the proper amount of layer 4 neurons in the mouse sensory cortices. This process is prerequisite for further maturation of the primary somatosensory area, such as barrel field formation instructed by a neuronal activity-dependent mechanism. Our results provide an actual case in which highly site-specific axon projection confers further regional complexity upon the target field through locally secreting signaling molecules from axon terminals.


Subject(s)
Neocortex , Animals , Axons/physiology , Mice , Neocortex/physiology , Neurons/physiology , Presynaptic Terminals , Somatosensory Cortex/physiology , Thalamus/physiology
5.
Sci Rep ; 11(1): 18332, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526555

ABSTRACT

Roles of interstitial tissue in morphogenesis of testicular structures remain less well understood. To analyze the roles of CD34+ cells in the reconstruction of interstitial tissue containing Leydig cells (LCs), and testicular structures, we used 3D-reaggregate culture of dissociated testicular cells from prepubertal mouse. After a week of culture, adult Leydig cells (ALCs) were preferentially incorporated within CD34+ cell-aggregates, but fetal LCs (FLCs) were not. Immunofluorescence studies showed that integrins α4, α9 and ß1, and VCAM1, one of the ligands for integrins α4ß1 and α9ß1, are expressed mainly in CD34+ cells and ALCs, but not in FLCs. Addition of function-blocking antibodies against each integrin and VCAM1 to the culture disturbed the reconstruction of testicular structures. Antibodies against α4 and ß1 integrins and VCAM1 robustly inhibited cell-to-cell adhesion between testicular cells and between CD34+ cells. Cell-adhesion assays indicated that CD34+ cells adhere to VCAM1 through the interaction with α4ß1 integrin. Live cell imaging showed that CD34+ cells adhered around ALC-aggregates. CD34+ cells on the dish moved toward the aggregates, extending filopodia, and entered into them, which was disturbed by VCAM1 antibody. These results indicate that VCAM1-α4ß1 integrin interaction plays pivotal roles in formation of testicular interstitial tissues in vitro and also in vivo.


Subject(s)
Integrin alpha4beta1/metabolism , Testis/cytology , Testis/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Animals , Antigens, CD34/metabolism , Biomarkers , Cell Adhesion/drug effects , Cell Adhesion/genetics , Cells, Cultured , Gene Expression , Integrin alpha4beta1/genetics , Leydig Cells/metabolism , Male , Mice , Organogenesis/genetics , Protein Binding , Protein Isoforms , Sexual Maturation , Spheroids, Cellular , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/pharmacology
6.
Front Cell Dev Biol ; 9: 632381, 2021.
Article in English | MEDLINE | ID: mdl-33937233

ABSTRACT

Proper brain development requires precisely controlled phases of stem cell proliferation, lineage specification, differentiation, and migration. Lineage specification depends partly on concentration gradients of chemical cues called morphogens. However, the rostral brain (telencephalon) expands prominently during embryonic development, dynamically altering local morphogen concentrations, and telencephalic subregional properties develop with a time lag. Here, we investigated how progenitor specification occurs under these spatiotemporally changing conditions using a three-dimensional in vitro differentiation model. We verified the critical contributions of three signaling factors for the lineage specification of subregional tissues in the telencephalon, ventralizing sonic hedgehog (Shh) and dorsalizing bone morphogenetic proteins (BMPs) and WNT proteins (WNTs). We observed that a short-lasting signal is sufficient to induce subregional progenitors and that the timing of signal exposure for efficient induction is specific to each lineage. Furthermore, early and late progenitors possess different Shh signal response capacities. This study reveals a novel developmental mechanism for telencephalon patterning that relies on the interplay of dose- and time-dependent signaling, including a time lag for specification and a temporal shift in cellular Shh sensitivity. This delayed fate choice through two-phase specification allows tissues with marked size expansion, such as the telencephalon, to compensate for the changing dynamics of morphogen signals.

7.
Sci Transl Med ; 13(587)2021 03 31.
Article in English | MEDLINE | ID: mdl-33790026

ABSTRACT

The lateral ventricle (LV) is flanked by the subventricular zone (SVZ), a neural stem cell (NSC) niche rich in extrinsic growth factors regulating NSC maintenance, proliferation, and neuronal differentiation. Dysregulation of the SVZ niche causes LV expansion, a condition known as hydrocephalus; however, the underlying pathological mechanisms are unclear. We show that deficiency of the proteoglycan Tsukushi (TSK) in ependymal cells at the LV surface and in the cerebrospinal fluid results in hydrocephalus with neurodevelopmental disorder-like symptoms in mice. These symptoms are accompanied by altered differentiation and survival of the NSC lineage, disrupted ependymal structure, and dysregulated Wnt signaling. Multiple TSK variants found in patients with hydrocephalus exhibit reduced physiological activity in mice in vivo and in vitro. Administration of wild-type TSK protein or Wnt antagonists, but not of hydrocephalus-related TSK variants, in the LV of TSK knockout mice prevented hydrocephalus and preserved SVZ neurogenesis. These observations suggest that TSK plays a crucial role as a niche molecule modulating the fate of SVZ NSCs and point to TSK as a candidate for the diagnosis and therapy of hydrocephalus.


Subject(s)
Hydrocephalus , Neural Stem Cells , Neurogenesis , Proteoglycans , Animals , Cell Proliferation , Humans , Mice , Mice, Knockout , Stem Cell Niche
8.
Med Mol Morphol ; 53(3): 168-176, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32002665

ABSTRACT

The piriform cortex (paleocortex) is the olfactory cortex or the primary cortex for the sense of smell. It receives the olfactory input from the mitral and tufted cells of the olfactory bulb and is involved in the processing of information pertaining to odors. The piriform cortex and the adjoining neocortex have different cytoarchitectures; while the former has a three-layered structure, the latter has a six-layered structure. The regulatory mechanisms underlying the building of the six-layered neocortex are well established; in contrast, less is known about of the regulatory mechanisms responsible for structure formation of the piriform cortex. The differences as well as similarities in the regulatory mechanisms between the neocortex and the piriform cortex remain unclear. Here, the expression of neocortical layer-specific genes in the piriform cortex was examined. Two sublayers were found to be distinguished in layer II of the piriform cortex using Ctip2/Bcl11b and Brn1/Pou3f3. The sequential expression pattern of Ctip2 and Brn1 in the piriform cortex was similar to that detected in the neocortex, although the laminar arrangement in the piriform cortex exhibited an outside-in arrangement, unlike that observed in the neocortex.


Subject(s)
Neocortex/anatomy & histology , Piriform Cortex/anatomy & histology , Animals , Mice , Neocortex/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , POU Domain Factors/metabolism , Piriform Cortex/metabolism , Repressor Proteins/metabolism , Time Factors , Tumor Suppressor Proteins/metabolism
9.
Biochem Biophys Res Commun ; 524(1): 117-122, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31980168

ABSTRACT

The telencephalon is one of the most-elaborated tissues. A broad variety of cell types is produced by spatiotemporally regulated mechanisms and is involved, in different combinations, in subregional formation. The dorsal half of the telencephalon, the pallium or cerebral cortex, is subdivided along the dorsal-ventral (D-V) axis into the medial, dorsal, lateral, and ventral pallium (MP, DP, LP and VP, respectively). An in vitro differentiation system has been achieved using mouse embryonic stem cells, and major telencephalic neurons can be obtained in this way; however, in using the in vitro differentiation system, many telencephalic neuron subtypes remain undifferentiated, although some of them are related to neuronal diseases. In the current study, we found that inhibiting the TGFbeta signal was efficient for neural induction. A continuous arrangement of Emx1+/Pax6-, Emx1+/Pax6+, and Emx1-/Pax6+ cells was achieved in Foxg1+ neuroepithelia, corresponding approximately to cortical progenitors derived from MP, DP/LP, and VP, respectively. A small portion of Dbx1+ cells resided in the VP fraction. These findings suggested that the D-V axis of the pallium was recapitulated in the in vitro-derived pallium.


Subject(s)
Cerebral Cortex/metabolism , Mouse Embryonic Stem Cells/metabolism , Neurons/metabolism , Telencephalon/metabolism , Animals , Cell Differentiation , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/pharmacokinetics , Mice , PAX6 Transcription Factor/metabolism , Transcription Factors/metabolism
10.
Commun Biol ; 2: 95, 2019.
Article in English | MEDLINE | ID: mdl-30886905

ABSTRACT

The morphogenesis of mammalian embryonic external genitalia (eExG) shows dynamic differences between males and females. In genotypic males, eExG are masculinized in response to androgen signaling. Disruption of this process can give rise to multiple male reproductive organ defects. Currently, mechanisms of androgen-driven sexually dimorphic organogenesis are still unclear. We show here that mesenchymal-derived actomyosin contractility, by MYH10, is essential for the masculinization of mouse eExG. MYH10 is expressed prominently in the bilateral mesenchyme of male eExG. Androgen induces MYH10 protein expression and actomyosin contractility in the bilateral mesenchyme. Inhibition of actomyosin contractility through blebbistatin treatment and mesenchymal genetic deletion induced defective urethral masculinization with reduced mesenchymal condensation. We also suggest that actomyosin contractility regulates androgen-dependent mesenchymal directional cell migration to form the condensation in the bilateral mesenchyme leading to changes in urethral plate shape to accomplish urethral masculinization. Thus, mesenchymal-derived actomyosin contractility is indispensable for androgen-driven urethral masculinization.


Subject(s)
Actomyosin/metabolism , Androgens/metabolism , Urethra/physiology , Animals , Biomarkers , Fluorescent Antibody Technique , Immunohistochemistry , Male , Mice , Models, Biological , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Nonmuscle Myosin Type IIB/genetics , Nonmuscle Myosin Type IIB/metabolism
11.
Cereb Cortex ; 29(9): 3725-3737, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30307484

ABSTRACT

The development of the mammalian cerebral cortex involves a variety of temporally organized events such as successive waves of neuronal production and the transition of progenitor competence for each neuronal subtype generated. The number of neurons generated in a certain time period, that is, the rate of neuron production, varies across the regions of the brain and the specific developmental stage; however, the underlying mechanism of this process is poorly understood. We have recently found that nascent neurons communicate with undifferentiated progenitors and thereby regulate neurogenesis, through a transiently retained apical endfoot that signals via the Notch pathway. Here, we report that the retention time length of the neuronal apical endfoot correlates with the rate of neuronal production in the developing mouse cerebral cortex. We further demonstrate that a forced reduction or extension of the retention period through the disruption or stabilization of adherens junction, respectively, resulted in the acceleration or deceleration of neurogenesis, respectively. Our results suggest that the apical endfeet of differentiating cells serve as a pace controller for neurogenesis, thereby assuring the well-proportioned laminar organization of the neocortex.


Subject(s)
Cerebral Cortex/embryology , Neurogenesis , Neurons/physiology , Animals , Cell Proliferation , Mice, Inbred ICR
12.
PLoS One ; 12(11): e0188705, 2017.
Article in English | MEDLINE | ID: mdl-29190781

ABSTRACT

Tissue reconstruction in vitro can provide, if successful, a refined and simple system to analyze the underlying mechanisms that drive the morphogenesis and maintain the ordered structure. We have recently succeeded in reconstruction of seminiferous cord-like and tubule-like structures using 3-D re-aggregate culture of dissociated testicular cells. In testis formation, endothelial cells that migrated from mesonephroi to embryonic gonads have been shown to be critical for development of testis cords, but how endothelial cells contribute to testis cord formation remains unknown. To decipher the roles of endothelial and peritubular cells in the reconstruction of cord-like and tubule-like structures, we investigated the behavior of CD34+ endothelial and p75+ cells, and peritubular myoid cells (PTMCs) in 3-D re-aggregate cultures of testicular cells. The results showed that these 3 types of cells had the capacity of re-aggregation on their own and with each other, and of segregation into 3 layers in a re-aggregate, which were very similar to interstitial and peritubular tissues in vivo. Observation of behaviors of fluorescent Sertoli cells and other non-fluorescent types of cells using testes from Sox9-EGFP transgenic mice showed dynamic cell movement and segregation in re-aggregate cultures. Cultures of testicular cells deprived of interstitial and peritubular cells resulted in dysmorphic structures, but re-addition of them restored tubule-like structures. Purified CD34+ cells in culture differentiated into p75+ cells and PTMCs. These results indicate that CD34+ cells differentiate into p75+ cells, which then differentiate into PTMCs. TGFß signaling inhibitors, SB431542 and ALK5i, disturbed the reconstruction of cord-like and tubule-like structures, and the latter compromised re-construction of interstitial-like and peritubular-like structures, as well as the proliferation of CD34+, p75+, PTMCs, and Sertoli cells, and their movement and differentiation. These results indicate that CD34+ cells and signaling through ALK5 play pivotal roles in the morphogenesis of interstitial-like, peritubular-like and cord-like structures.


Subject(s)
Antigens, CD34/immunology , Protein Serine-Threonine Kinases/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Seminiferous Tubules/anatomy & histology , Signal Transduction , Animals , Animals, Newborn , Cell Proliferation , Male , Mice , Mice, Inbred C57BL , Receptor, Transforming Growth Factor-beta Type I , Seminiferous Tubules/cytology
13.
Dev Growth Differ ; 59(4): 286-301, 2017 May.
Article in English | MEDLINE | ID: mdl-28585227

ABSTRACT

The cerebral cortex in mammals, the neocortex specifically, is highly diverse among species with respect to its size and morphology, likely reflecting the immense adaptiveness of this lineage. In particular, the pattern and number of convoluted ridges and fissures, called gyri and sulci, respectively, on the surface of the cortex are variable among species and even individuals. However, little is known about the mechanism of cortical folding, although there have been several hypotheses proposed. Recent studies on embryonic neurogenesis revealed the differences in cortical progenitors as a critical factor of the process of gyrification. Here, we investigated the gyrification processes using developing guinea pig brains that form a simple but fundamental pattern of gyri. In addition, we established an electroporation-mediated gene transfer method for guinea pig embryos. We introduce the guinea pig brain as a useful model system to understand the mechanisms and basic principle of cortical folding.


Subject(s)
Brain/embryology , Cerebral Cortex/embryology , Guinea Pigs , Models, Animal , Animals , Electroporation
14.
Cell Rep ; 19(2): 351-363, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28402857

ABSTRACT

Notch signaling in neural progenitor cell is triggered by ligands expressed in adjacent cells. To identify the sources of active Notch ligands in the mouse retina, we negatively regulated Notch ligand activity in various neighbors of retinal progenitor cells (RPCs) by eliminating mindbomb E3 ubiquitin protein ligase 1 (Mib1). Mib1-deficient retinal cells failed to induce Notch activation in intra-lineage RPCs, which prematurely differentiated into neurons; however, Mib1 in post-mitotic retinal ganglion cells was not important. Interestingly, Mib1 in the retinal pigment epithelium (RPE) also contributed to Notch activation in adjacent RPCs by supporting the localization of active Notch ligands at RPE-RPC contacts. Combining this RPE-driven Notch signaling and intra-retinal Notch signaling, we propose a model in which one RPC daughter receives extra Notch signals from the RPE to become an RPC, whereas its sister cell receives only a subthreshold level of intra-retinal Notch signal and differentiates into a neuron.


Subject(s)
Cell Differentiation/genetics , Neurons/cytology , Retina/growth & development , Retinal Pigment Epithelium/growth & development , Ubiquitin-Protein Ligases/genetics , Animals , Ligands , Mice , Neurons/metabolism , Receptors, Notch/genetics , Retina/cytology , Retinal Pigment Epithelium/metabolism , Signal Transduction , Stem Cells/cytology
15.
J Pharm Sci ; 104(9): 3194-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25821174

ABSTRACT

The aim of this paper was to predict the pharmacokinetics of doripenem in pediatrics from adult pharmacokinetic data and to investigate dosing regimens in pediatrics using Monte-Carlo pharmacokinetics/pharmacodynamics (PK/PD) simulations prior to the initiation of pediatric clinical trials. The pharmacokinetics in pediatrics was predicted by using a previously reported approach for ß-lactam antibiotics. Monte-Carlo simulation was employed to assess dosing regimens in pediatrics based on the predicted pharmacokinetic profiles and the minimum inhibitory concentration (MIC) distributions of Haemophilus influenzae and Streptococcus pneumoniae, which frequently cause infectious pediatric diseases. The probabilities of attaining target time above MIC (40%T>MIC) were calculated for dosing regimens of 1-30 mg/kg with two or three times daily dosing (TID) based on simulations of 5000 pediatric patients and MICs. The results suggested 15 and 5 mg/kg TID would give approximately 90% or more probability of target attainment against Haemophilus influenzae and Streptococcus pneumoniae, respectively. The pediatric phase 3 study confirmed that pharmacokinetics in pediatrics could be well predicted by this method, indicating that the dosing regimen had been appropriately selected. The framework of dose selection for pediatric clinical trials based on predictions of pharmacokinetic profiles and PK/PD indices should be applicable to the development of other ß-lactam antibiotics for pediatric use.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacokinetics , Carbapenems/therapeutic use , Adult , Child , Doripenem , Haemophilus influenzae/drug effects , Humans , Microbial Sensitivity Tests/methods , Monte Carlo Method , Streptococcus pneumoniae/drug effects
16.
Development ; 141(10): 2075-84, 2014 May.
Article in English | MEDLINE | ID: mdl-24803655

ABSTRACT

Thalamocortical axons (TCAs) pass through the prethalamus in the first step of their neural circuit formation. Although it has been supposed that the prethalamus is an intermediate target for thalamocortical projection formation, much less is known about the molecular mechanisms of this targeting. Here, we demonstrated the functional implications of the prethalamus in the formation of this neural circuit. We show that Olig2 transcription factor, which is expressed in the ventricular zone (VZ) of prosomere 3, regulates prethalamus formation, and loss of Olig2 results in reduced prethalamus size in early development, which is accompanied by expansion of the thalamic eminence (TE). Extension of TCAs is disorganized in the Olig2-KO dorsal thalamus, and initial elongation of TCAs is retarded in the Olig2-KO forebrain. Microarray analysis demonstrated upregulation of several axon guidance molecules, including Epha3 and Epha5, in the Olig2-KO basal forebrain. In situ hybridization showed that the prethalamus in the wild type excluded the expression of Epha3 and Epha5, whereas loss of Olig2 resulted in reduction of this Ephas-negative area and the corresponding expansion of the Ephas-positive TE. Dissociated cultures of thalamic progenitor cells demonstrated that substrate-bound EphA3 suppresses neurite extension from dorsal thalamic neurons. These results indicate that Olig2 is involved in correct formation of the prethalamus, which leads to exclusion of the EphA3-expressing region and is crucial for proper TCA formation. Our observation is the first report showing the molecular mechanisms underlying how the prethalamus acts on initial thalamocortical projection formation.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/physiology , Nerve Net/embryology , Nerve Tissue Proteins/physiology , Neural Pathways/embryology , Thalamus/embryology , Animals , Axons/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Chick Embryo , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mice , Mice, Inbred ICR , Mice, Knockout , Nerve Net/metabolism , Nerve Tissue Proteins/genetics , Neural Pathways/metabolism , Oligodendrocyte Transcription Factor 2 , Transcription Factors/physiology
17.
Development ; 141(8): 1671-82, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24715457

ABSTRACT

The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors.


Subject(s)
Cadherins/metabolism , Neurogenesis , Neurons/cytology , Neurons/metabolism , Receptors, Notch/metabolism , Signal Transduction , Vertebrates/metabolism , Adherens Junctions/metabolism , Adherens Junctions/ultrastructure , Animals , Brain/cytology , Brain/embryology , Brain/ultrastructure , Calcium-Binding Proteins , Cell Adhesion , Chickens , Imaging, Three-Dimensional , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Models, Biological , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Subcellular Fractions/metabolism
18.
Sci Rep ; 3: 1986, 2013.
Article in English | MEDLINE | ID: mdl-23759691

ABSTRACT

Human mercaptolactate-cysteine disulfiduria (MCDU) was first recognized and reported in 1968. Most cases of MCDU are associated with mental retardation, while the pathogenesis remains unknown. To investigate it, we generated homozygous 3-mercaptopyruvate sulfurtransferase (MST: EC 2.8.1.2) knockout (KO) mice using C57BL/6 embryonic stem cells as an animal model. The MST-KO mice showed significantly increased anxiety-like behaviors with an increase in serotonin level in the prefrontal cortex (PFC), but not with abnormal morphological changes in the brain. MCDU can be caused by loss in the functional diversity of MST; first, MST functions as an antioxidant protein. MST possessing 2 redox-sensing molecular switches maintains cellular redox homeostasis. Second, MST can produce H2S (or HS(-)). Third, MST can also produce SOx. It is concluded that behavioral abnormality in MST-KO mice is caused by MST function defects such as an antioxidant insufficiency or a new transducer, H2S (or HS(-)) and/or SOx deficiency.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Anxiety/genetics , Sulfurtransferases/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Animals , Behavior, Animal , Biogenic Monoamines/metabolism , Disease Models, Animal , Female , Gene Expression , Gene Order , Gene Targeting , Heterozygote , Hippocampus/metabolism , Hippocampus/pathology , Homozygote , Humans , Male , Mice , Mice, Knockout , Receptor, Serotonin, 5-HT1A/genetics , Receptor, Serotonin, 5-HT1A/metabolism , Sulfurtransferases/metabolism
19.
J Neurosci ; 32(44): 15388-402, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23115177

ABSTRACT

The mammalian neocortex is composed of various types of neurons that reflect its laminar and area structures. It has been suggested that not only intrinsic but also afferent-derived extrinsic factors are involved in neuronal differentiation during development. However, the role and molecular mechanism of such extrinsic factors are almost unknown. Here, we attempted to identify molecules that are expressed in the thalamus and affect cortical cell development. First, thalamus-specific molecules were sought by comparing gene expression profiles of the developing rat thalamus and cortex using microarrays, and by constructing a thalamus-enriched subtraction cDNA library. A systematic screening by in situ hybridization showed that several genes encoding extracellular molecules were strongly expressed in sensory thalamic nuclei. Exogenous and endogenous protein localization further demonstrated that two extracellular molecules, Neuritin-1 (NRN1) and VGF, were transported to thalamic axon terminals. Application of NRN1 and VGF to dissociated cell culture promoted the dendritic growth. An organotypic slice culture experiment further showed that the number of primary dendrites in multipolar stellate neurons increased in response to NRN1 and VGF, whereas dendritic growth of pyramidal neurons was not promoted. These molecules also increased neuronal survival of multipolar neurons. Taken together, these results suggest that the thalamus-specific molecules NRN1 and VGF play an important role in the dendritic growth and survival of cortical neurons in a cell type-specific manner.


Subject(s)
Cell Survival/drug effects , Cerebral Cortex/cytology , Dendrites/drug effects , Neurons/drug effects , Thalamus/chemistry , Thalamus/physiology , Animals , Antibodies, Blocking/pharmacology , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/growth & development , DNA Primers , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Electroporation , Female , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/pharmacology , Genetic Vectors , Immunohistochemistry , In Situ Hybridization , Male , Microarray Analysis , Neuropeptides/antagonists & inhibitors , Neuropeptides/chemistry , Neuropeptides/pharmacology , Plasmids/genetics , Pregnancy , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Transfection
20.
Cell Struct Funct ; 36(1): 131-43, 2011.
Article in English | MEDLINE | ID: mdl-21685705

ABSTRACT

To define the roles of α-catenin in cell-cell adhesion, the E-cadherin, α-catenin, ß-catenin, and/or plakoglobin genes were inactivated in F9 teratocarcinoma cells. An E-cadherin-α-catenin fusion protein (Eα) restored full cell-adhesion function and organized the actin-based cytoskeleton and ZO-1, an actin filament binding protein, in F9 cells lacking all endogenous cadherin-catenin complex components. There were two types of cadherin-based cell-adhesion junctions in parental F9 cells, those with ZO-1 and those without ZO-1, and only junctions with ZO-1 were associated with thick actin bundles. Additionally, ZO-1 localized to most Eα-based cell-adhesion junctions. These data demonstrated that Eα supported cadherin-based cell adhesion and recruited actin bundles and ZO-1 to cell-cell contact sites in the absence of cytoplasmic α-catenin. Moreover, the C-terminal half of α-catenin was involved in the formation of cell-adhesion junctions with ZO-1.


Subject(s)
Cadherins/metabolism , Cytoskeleton/ultrastructure , alpha Catenin/metabolism , Actins/ultrastructure , Animals , Cadherins/genetics , Cell Adhesion , Cell Line, Tumor , Gene Deletion , Membrane Proteins/analysis , Mice , Phosphoproteins/analysis , Zonula Occludens-1 Protein , alpha Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...