Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Domest Anim ; 57(9): 999-1006, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35614560

ABSTRACT

The balance between proliferation, differentiation and apoptosis is well-coordinated in spermatogenesis for the timely production of appropriate numbers of sperm in animals. Disruption or decrease in sperm production is due to many conditions, including changes in testicular cell fate balance. Interspecies hybridization of domestic yaks and cattle results in sterility in males because of spermatogenic arrest; however, the underlying mechanisms involved in sterility are still unclear. In the present study, we investigated the proliferation and apoptosis status during the development of yaks and crossbred cattle-yaks using immunohistochemistry of proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assays. Testicular tissues from yaks (immature: 1 year old, mature: 2-3 years old) and backcrossed hybrids (2 year old) were collected and used to investigate the expression of each parameter in testicular cells. During the maturation of yak testes, proliferation and apoptosis became active only in spermatogenic cells, and not in other somatic cells, such as Sertoli cells, myoid cells and Leydig cells. Furthermore, hybrid cattle-yak testes maintained proliferation ability but less apoptotic ability in spermatogenic cells when compared to yaks of the same age, suggesting that normal spermatogenic cell fate control is disrupted by changes in the balance between proliferation and apoptosis. In addition, Leydig cell proliferation rate was higher than apoptosis rate in the cattle-yak testes, indicating an increased number of Leydig cells, which may affect spermatogenesis through changes in steroidogenesis. Although epigenetic changes may be involved in cattle-yak testes, further studies are needed to clarify the modulation of proliferation and apoptosis to elucidate the mechanisms of infertility in hybrid cattle-yak males.


Subject(s)
Azoospermia , Cattle Diseases , Animals , Apoptosis , Azoospermia/veterinary , Cattle , Cattle Diseases/metabolism , Cell Proliferation , Male , Semen , Spermatogenesis , Testis/metabolism
2.
Reprod Domest Anim ; 57(3): 304-313, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34854139

ABSTRACT

Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.


Subject(s)
Cattle Diseases , Infertility, Male , Acetylation , Animals , Cattle , Cattle Diseases/metabolism , DNA Methylation , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/veterinary , Male , Spermatogenesis/genetics , Testis/metabolism
3.
Analyst ; 145(11): 3839-3845, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32253394

ABSTRACT

To examine the transport of an ionic substance through a bilayer lipid membrane (BLM), an electrochemical method combined with fluorometry was proposed. In this method, the transport of a fluorescent ion through the BLM was detected both as the transmembrane current and the dynamic change of fluorescence intensity synchronizing scanning membrane potential. The fluorescence intensity was measured in the local area close to the planar BLM by utilizing a confocal fluorescence microscope. The electrochemical method combined with fluorometry makes it possible to analyze only the transport of a target fluorescent ion in distinction from the transport of other coexisting ions. With the proposed electrochemical method, the ion transport caused by both a hydrophobic fluorescent cation (rhodamine 6G+, R6G+) and a relatively hydrophobic anion (BF4-) was examined. The electrochemical method combined with fluorometry characterized the transmembrane current as the transport of R6G+. Membrane conductance for the R6G+ transport increased proportionally to the concentrations of R6G+ and BF4- distributed in the hydrocarbon medium of the BLM which were estimated by extraction experiments with liposomes. These results show that the distribution of a cation and an anion from the aqueous phase in the BLM predominantly controls the membrane conductance for ion transport through the BLM.


Subject(s)
Boron Compounds/chemistry , Ion Transport , Lipid Bilayers/chemistry , Rhodamines/chemistry , Cholesterol/chemistry , Electrochemical Techniques/methods , Fluorometry , Phosphatidylcholines/chemistry
4.
Reprod Domest Anim ; 55(2): 209-216, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31858644

ABSTRACT

In Mongolia, yak (Bos grunniens) are able to live in alpine areas and their products greatly influence the lives of the local people. Increased vigour in hybridized yak and cattle can offer benefits for livestock farmers. However, male hybrids show reproductive defects resulting from spermatogenesis arrest, affecting the conservation and maintenance of dominant traits in the next generation. The underlying mechanisms involved in hybrid cattle-yak infertility have recently been investigated; however, the genetic cause is still unclear. Androgens and androgen receptor (AR) signalling are required for spermatogenesis. We, therefore, evaluated the expression of AR, 3ß-hydroxysteroid dehydrogenase (3ßHSD) and 5α-reductase 2 (SRD5A2) in Leydig cells to investigate their function in cattle-yak spermatogenesis. Testicular tissues from yaks (1-3 years old) and hybrids (F1-F3, 2 years old) were collected and subjected to immunohistochemistry and image analyses to investigate the expression of each parameter in the Leydig cells. After maturation at 2 years, the expression levels of AR increased and the levels of 3ßHSD decreased, but the SRD5A2 levels remained constant in yak. However, the cattle-yak hybrid F2 showed immature testicular development and significantly different expression levels of AR and 3ßHSD compared with mature yak. These results suggest that the decreased expression of AR and increased expression of 3ßHSD in the Leydig cells of cattle-yak hybrid testes may represent one of the causes of infertility. Our study might help in solving the problem of infertility in crossbreeding.


Subject(s)
Cattle/genetics , Hybridization, Genetic , Infertility, Male/genetics , Leydig Cells/metabolism , 3-Hydroxysteroid Dehydrogenases/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , Animals , Infertility, Male/pathology , Leydig Cells/enzymology , Male , Receptors, Androgen/metabolism , Spermatogenesis/genetics , Testis/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...