Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(2): e202314962, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38032351

ABSTRACT

An empirical model was developed to predict organic solvophobic effects using N-phenylimide molecular balances functionalized with non-polar alkyl groups. Solution studies and X-ray crystallography confirmed intramolecular alkyl-alkyl interactions in their folded conformers. The structural modularity of the balances allowed systematic variation of alkyl group lengths. Control balances were instrumental in isolating weak organic solvophobic effects by eliminating framework solvent-solute effects. A 19 F NMR label enabled analysis across 46 deuterated and non-deuterated solvent systems. Linear correlations were observed between organic solvophobic effects and solvent cohesive energy density (ced) as well as changes in solvent-accessible surface areas (SASA). Using these empirical relationships, a model was constructed to predict organic solvophobic interaction energy per unit area for any organic solvent with known ced values. The predicted interaction energies aligned with recent organic solvophobic measurements and literature values for the hydrophobic effect on non-polar surfaces confirmed the model's accuracy and utility.

2.
Acc Chem Res ; 56(24): 3572-3580, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38009964

ABSTRACT

ConspectusDespite their ubiquity and early discovery, London dispersion forces are often overlooked. This is due, in part, to the difficulty in assessing their contributions to molecular and polymeric structure, stability, properties, and reactivities. However, recent advances in modeling have revealed that dispersion interactions play an important role in many important chemical and biological processes. Experimental confirmation of their impact in solution has been challenging, leading to controversies about their relative importance.In the course of studying noncovalent interactions using molecular devices, our understanding and appreciation for the importance of dispersion interactions have evolved. This Account follows this intellectual journey by using examples from the literature. The goals are twofold: to describe recent advances in understanding the interaction and to provide guidance to researchers studying weak noncovalent interactions. However, first, the experimental methods for measuring the effects of dispersion interactions and the strategies for isolating their influence are described. These include the design of molecular devices to measure these weak noncovalent interactions and the strategies to disentangle the solvation, solvophobic, and dispersion components of the resulting equilibria.The literature examples are organized around five fundamental questions. (1) Do dispersion interactions have a measurable effect on solution equilibria? (2) To what extent do solvents attenuate or compensate for dispersion interactions? (3) To what extent do the solvation and solvophobic terms influence the dispersion equilibria? (4) Can we predict whether a system will form attractive dispersion or repulsive steric interactions? (5) Can the dispersion term be isolated and interrogated? We were often surprised by the answers to these questions. In each case, we describe how the systems were designed to address these questions and discuss possible interpretations of the results.While dispersion interactions in solution were weak (usually <1 kcal/mol), their influence on complexation and conformational equilibria can be observed and measured. This underscores the significance of these interactions in molecular recognition, coordination chemistry, reaction design, and catalysis. The solvent components of the dispersion equilibria can also be significant. Therefore, the isolation of the dispersion contributions from the solvation and solvophobic effects represents an ongoing challenge. The experimental studies also provide important benchmarks and offer valuable insights to help refine the next generation of computational solvent models.

3.
Angew Chem Int Ed Engl ; 62(28): e202304960, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37155943

ABSTRACT

Stabilizing nitrogen pnictogen bond interactions were measured using molecular rotors. Intramolecular C=O⋅⋅⋅N interactions were formed in the bond rotation transition states which lowered the rotational barriers and increased the rates of rotation, as measured by EXSY NMR. The pnictogen interaction energies show a very strong correlation with the positive electrostatic potential on nitrogen, which was consistent with a strong electrostatic component. In contrast, the NBO perturbation and pyramidalization analyses show no correlation, suggesting that the orbital-orbital component is minor. The strongest C=O⋅⋅⋅N pnictogen interactions were comparable to C=O⋅⋅⋅C=O interactions and were stronger than C=O⋅⋅⋅Ph interactions, when measured using the same N-phenylimide rotor system. The ability of the nitrogen pnictogen interactions to stabilize transition states and enhance kinetic processes demonstrates their potential in catalysis and reaction design.

4.
Chem Commun (Camb) ; 58(39): 5869-5872, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35470822

ABSTRACT

The ability to control molecular-scale motion using electrostatic interactions was demonstrated using an N-phenylsuccinimide molecular rotor with an electrostatic pyridyl-gate. Protonation of the pyridal-gate forms stabilizing electrostatic interactions in the transition state of the bond rotation process that lowers the rotational barrier and increases the rate of rotation by two orders of magnitude. Molecular modeling and energy decomposition analysis confirm the dominant role of attractive electrostatic interactions in lowering the bond rotation transition state.


Subject(s)
Models, Molecular , Rotation
5.
Org Lett ; 23(21): 8179-8182, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34670094

ABSTRACT

The attractive interaction between carbonyl oxygens and the π-face of aromatic surfaces was studied using N-phenylimide molecular rotors. The C═O···Ar interactions could stabilize the transition states but were half the strength of comparable C═O···C═O interactions. The C═O···Ar interaction had a significant electrostatic component but only a small orbital delocalization component.

6.
Acc Chem Res ; 53(11): 2705-2714, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33152232

ABSTRACT

Noncovalent interactions of aromatic surfaces play a key role in many biological processes and in determining the properties and utility of synthetic materials, sensors, and catalysts. However, the study of aromatic interactions has been challenging because these interactions are usually very weak and their trends are modulated by many factors such as structural, electronic, steric, and solvent effects. Recently, N-arylimide molecular balances have emerged as highly versatile and effective platforms for studying aromatic interactions in solution. These molecular balances can accurately measure weak noncovalent interactions in solution via their influence on the folded-unfolded conformational equilibrium. The structure (i.e., size, shape, π-conjugation, and substitution) and nature (i.e., element, charge, and polarity) of the π-surfaces and interacting groups can be readily varied, enabling the study of a wide range of aromatic interactions. These include aromatic stacking, heterocyclic aromatic stacking, and alkyl-π, chalcogen-π, silver-π, halogen-π, substituent-π, and solvent-π interactions. The ability to measure a diverse array of aromatic interactions within a single model system provides a unique perspective and insights as the interaction energies, stability trends, and solvent effects for different types of interactions can be directly compared. Some broad conclusions that have emerged from this comprehensive analysis include: (1) The strongest aromatic interactions involve groups with positive charges such as pyridinium and metal ions which interact with the electrostatically negative π-face of the aromatic surface via cation-π or metal-π interactions. Attractive electrostatic interactions can also form between aromatic surfaces and groups with partial positive charges. (2) Electrostatic interactions involving aromatic surfaces can be switched from repulsive to attractive using electron-withdrawing substituents or heterocycles. These electrostatic trends appear to span many types of aromatic interactions involving a polar group interacting with a π-surface such as halogen-π, chalcogen-π, and carbonyl-π. (3) Nonpolar groups form weak but measurable stabilizing interactions with aromatic surfaces in organic solvents due to favorable dispersion and/or solvophobic effects. A good predictor of the interaction strength is provided by the change in solvent-accessible surface area. (4) Solvent effects modulate the aromatic interactions in the forms of solvophobic effects and competitive solvation, which can be modeled using solvent cohesion density and specific solvent-solute interactions.

7.
Chem Sci ; 11(28): 7487-7494, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-34123031

ABSTRACT

A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O-H⋯O[double bond, length as m-dash]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol-1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O-H⋯O[double bond, length as m-dash]C hydrogen bond (1.5 kcal mol-1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms.

8.
J Am Chem Soc ; 141(42): 16579-16583, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31607125

ABSTRACT

A series of 16 molecular rotors were synthesized to investigate the ability of n→π* interactions to stabilize transition states (TSs) of bond rotation. Steric contributions to the rotational barrier were isolated using control rotors, which could not form n→π* interactions. Rotors with strong acceptor π* orbitals, such as ketones and aldehydes, had greatly increased rates of rotation. The TS stabilization of up to ∼10 kcal/mol was consistent with the formation of a strong n→π* stabilization between the imide carbonyl oxygens and the ortho R group in the planar TS. Computational studies effectively modeled the TS stabilization and geometry, and NBO analysis confirmed the role of n→π* interactions in stabilizing the TS.

9.
J Am Chem Soc ; 141(32): 12513-12517, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31348856

ABSTRACT

A series of N-arylimide molecular balances were developed to study and measure carbonyl-aromatic (CO-π) interactions. Carbonyl oxygens were observed to form repulsive interactions with unsubstituted arenes and attractive interactions with electron-deficient arenes with multiple electron-withdrawing groups. The repulsive and attractive CO-π aromatic interactions were well-correlated to electrostatic parameters, which allowed accurate predictions of the interaction energies based on the electrostatic potentials of the carbonyl and arene surfaces. Due to the pronounced electrostatic polarization of the C═O bond, the CO-π aromatic interaction was stronger than the previously studied oxygen-π and halogen-π aromatic interactions.

11.
J Am Chem Soc ; 140(41): 13301-13307, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30251855

ABSTRACT

A comprehensive experimental survey consisting of 36 molecular balances was conducted to compare 18 pairs of S-π versus O-π interactions over a wide range of structural, geometric, and solvent parameters. A strong linear correlation was observed between the folding energies of the sulfur and oxygen balances across the entire library of balance pairs. The more stable interaction systematically switched from the O-π to S-π interaction. Computational studies of bimolecular PhSCH3-arene and PhOCH3-arene complexes were able to replicate the experimental trends in the molecular balances. The change in preference for the O-π to S-π interaction was due to the interplay of stabilizing (dispersion and solvophobic) and destabilizing (exchange-repulsion) terms arising from the differences in size and polarizability of the oxygen and sulfur atoms.

12.
Chem Commun (Camb) ; 54(61): 8502-8505, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-30003202

ABSTRACT

The influence of salts on the solvophobic interactions of two non-polar surfaces in organic solvent was examined using a series of molecular balances. Specific anion effects were observed that followed the Hofmeister series and enhanced the solvophobic effect up to two-fold.

13.
Chem Commun (Camb) ; 53(92): 12469-12472, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29105705

ABSTRACT

Herein, the control of a molecular rotor using hydrogen bonding guests is demonstrated. With a properly positioned phenol substituent, the N-arylimide rotors can form an intramolecular hydrogen bond that catalyses the rotational isomerization process. The addition of the guests disrupts the hydrogen bond and raises the rotational barrier, slowing the rotation by two orders of magnitude.

14.
Angew Chem Int Ed Engl ; 56(25): 7209-7212, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28464551

ABSTRACT

A series of N-arylimide molecular balances were designed to study and measure fluorine-aromatic (F-π) interactions. Fluorine substituents gave rise to increasingly more stabilizing interactions with more electron-deficient aromatic surfaces. The attractive F-π interaction is electrostatically driven and is stronger than other halogen-π interactions.

15.
J Am Chem Soc ; 139(19): 6550-6553, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28463006

ABSTRACT

A molecular torsion balance was designed to study and measure OH-π interactions between protic solvents and aromatic surfaces. These specific solvent-solute interactions were measured via their influence on the folded-unfolded equilibrium of an N-arylimide rotor. Protic solvents displayed systematically weaker solvophobic interactions than aprotic solvents with similar solvent cohesion parameters. This was attributed to the formation of OH-π interactions between the protic solvents and the exposed aromatic surfaces in the unfolded conformer that offset the stronger solvophobic effects for protic solvents.

16.
Org Biomol Chem ; 15(7): 1554-1564, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-27878156

ABSTRACT

Aromatic stacking interactions are one of the most common types of non-covalent interactions. However, their fundamental origins and the ability to accurately predict their stability trends are still an active area of research. The study of aromatic stacking interactions has been particularly challenging. The interaction involves a delicate balance of multiple forces, and the aromatic surfaces can readily adopt different interaction geometries. Thus, the collaborative efforts of theoretical and experimental researchers have been essential to understand and build more accurate predictive models of aromatic stacking interactions.

17.
Angew Chem Int Ed Engl ; 55(28): 8086-9, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27159670

ABSTRACT

The stabilizing and destabilizing effects of alkyl groups on an aromatic stacking interaction were experimentally measured in solution. The size (Me, Et, iPr, and tBu) and position (meta and para) of the alkyl groups were varied in a molecular balance model system designed to measure the strength of an intramolecular aromatic interaction. Opposite stability trends were observed for alkyl substituents at different positions on the aromatic rings. At the closer meta-position, smaller groups were stabilizing and larger groups were destabilizing. Conversely, at the farther para-position, the larger alkyl groups were systematically more stabilizing with the bulky tBu group forming the strongest stabilizing interaction. X-ray crystal structures showed that the stabilizing interactions of the small meta-alkyl and large para-alkyl groups were due to their similar distances and van der Waals contact areas with the edge of opposing aromatic ring.

18.
Chem Commun (Camb) ; 51(79): 14809-12, 2015 Oct 11.
Article in English | MEDLINE | ID: mdl-26299357

ABSTRACT

A dynamic intramolecular charge-transfer (CT) complex was designed that displayed reversible colour changes in the solid-state when treated with different organic solvents. The origins of the dichromatism were shown to be due to solvent-inclusion, which induced changes in the relative orientations of the donor pyrene and acceptor naphthalenediimide units.

19.
J Am Chem Soc ; 137(25): 8014-7, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26069987

ABSTRACT

A new series of molecular torsion balances were designed to measure the strength of individual Ag-π interactions in solution for an Ag(I) coordinated to a pyridine nitrogen. The formation of a well-defined intramolecular Ag-π interaction in these model systems was verified by X-ray crystallography and (1)H NMR. The strength of the intramolecular Ag-π interaction in solution was found to be stabilizing in nature and quantified to be -1.34 to -2.63 kcal/mol using a double mutant cycle analysis. The Ag-π interaction was also found to be very sensitive to changes in geometry or solvent environment.

20.
Chem Sci ; 6(7): 4358-4364, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-29218207

ABSTRACT

In this study, the contributions of London dispersion forces to the strength of aromatic stacking interactions in solution were experimentally assessed using a small molecule model system. A series of molecular torsion balances were designed to measure an intramolecular stacking interaction via a conformational equilibrium. To probe the importance of the dispersion term, the size and polarizability of one of the aromatic surfaces were systematically increased (benzene, naphthalene, phenanthrene, biphenyl, diphenylethene, and diphenylacetylene). After correcting for solvophobic, linker, and electrostatic substituent effects, the variations due to polarizability were found to be an order of magnitude smaller in solution than in comparison to analogous computational studies in vacuo. These results suggest that in solution the dispersion term is a small component of the aromatic stacking interaction in contrast to their dominant role in vacuo.

SELECTION OF CITATIONS
SEARCH DETAIL
...