Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Exp Neurol ; 373: 114673, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163475

ABSTRACT

Hypoxic-ischemic encephalopathy due to insufficient oxygen delivery to brain tissue is a leading cause of death or severe morbidity in neonates. The early recognition of the most severely affected individuals remains a clinical challenge. We hypothesized that hypoxic-ischemic injury can be detected using PET radiotracers for hypoxia ([18F]EF5), glucose metabolism ([18F]FDG), and inflammation ([18F]F-DPA). METHODS: A preclinical model of neonatal hypoxic-ischemic brain injury was made in 9-d-old rat pups by permanent ligation of the left common carotid artery followed by hypoxia (8% oxygen and 92% nitrogen) for 120 min. In vivo PET imaging was performed immediately after injury induction or at different timepoints up to 21 d later. After imaging, ex vivo brain autoradiography was performed. Brain sections were stained with cresyl violet to evaluate the extent of the brain injury and to correlate it with [18F]FDG uptake. RESULTS: PET imaging revealed that all three of the radiotracers tested had significant uptake in the injured brain hemisphere. Ex vivo autoradiography revealed high [18F]EF5 uptake in the hypoxic hemisphere immediately after the injury (P < 0.0001), decreasing to baseline even 1 d postinjury. [18F]FDG uptake was highest in the injured hemisphere on the day of injury (P < 0.0001), whereas [18F]F-DPA uptake was evident after 4 d (P = 0.029), peaking 7 d postinjury (P < 0.0001), and remained significant 21 d after the injury. Targeted evaluation demonstrated that [18F]FDG uptake measured by in vivo imaging 1 d postinjury correlated positively with the brain volume loss detected 21 d later (r = 0.72, P = 0.028). CONCLUSION: Neonatal hypoxic-ischemic brain injury can be detected using PET imaging. Different types of radiotracers illustrate distinct phases of hypoxic brain damage. PET may be a new useful technique, worthy of being explored for clinical use, to predict and evaluate the course of the injury.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Rats , Animals , Hypoxia-Ischemia, Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Disease Models, Animal , Oxygen , Animals, Newborn
2.
J Cereb Blood Flow Metab ; 44(6): 1024-1038, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38112197

ABSTRACT

Perinatal hypoxic-ischaemic encephalopathy (HIE) is the leading cause of irreversible brain damage resulting in serious neurological dysfunction among neonates. We evaluated the feasibility of positron emission tomography (PET) methodology with 15O-labelled gases without intravenous or tracheal cannulation for assessing temporal changes in cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in a neonatal HIE rat model. Sequential PET scans with spontaneous inhalation of 15O-gases mixed with isoflurane were performed over 14 days after the hypoxic-ischaemic insult in HIE pups and age-matched controls. CBF and CMRO2 in the injured hemispheres of HIE pups remarkably decreased 2 days after the insult, gradually recovering over 14 days in line with their increase found in healthy controls according to their natural maturation process. The magnitude of hemispheric tissue loss histologically measured after the last PET scan was significantly correlated with the decreases in CBF and CMRO2.This fully non-invasive imaging strategy may be useful for monitoring damage progression in neonatal HIE and for evaluating potential therapeutic outcomes.


Subject(s)
Animals, Newborn , Cerebrovascular Circulation , Disease Models, Animal , Hypoxia-Ischemia, Brain , Oxygen Radioisotopes , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/diagnostic imaging , Rats , Brain/metabolism , Brain/diagnostic imaging , Oxygen/metabolism , Rats, Sprague-Dawley
3.
Mol Imaging Biol ; 24(4): 641-650, 2022 08.
Article in English | MEDLINE | ID: mdl-35303205

ABSTRACT

PURPOSE: Recent studies have linked activated spinal glia to neuropathic pain. Here, using a positron emission tomography (PET) scanner with high spatial resolution and sensitivity, we evaluated the feasibility and sensitivity of N,N-diethyl-2-(2-(4-([18F]fluoro)phenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl)acetamide ([18F]F-DPA) imaging for detecting spinal cord microglial activation after partial sciatic nerve ligation (PSNL) in rats. PROCEDURES: Neuropathic pain was induced in rats (n = 20) by PSNL, and pain sensation tests were conducted before surgery and 3 and 7 days post-injury. On day 7, in vivo PET imaging and ex vivo autoradiography were performed using [18F]F-DPA or [11C]PK11195. Ex vivo biodistribution and PET imaging of the removed spinal cord were carried out with [18F]F-DPA. Sham-operated and PK11195-pretreated animals were also examined. RESULTS: Mechanical allodynia was confirmed in the PSNL rats from day 3 through day 7. Ex vivo autoradiography showed a higher lesion-to-background uptake with [18F]F-DPA compared with [11C]PK11195. Ex vivo PET imaging of the removed spinal cord showed [18F]F-DPA accumulation in the inflammation site, which was immunohistochemically confirmed to coincide with microglia activation. Pretreatment with PK11195 eliminated the uptake. The SUV values of in vivo [18F]F-DPA and [11C]PK11195 PET were not significantly increased in the lesion compared with the reference region, and were fivefold higher than the values obtained from the ex vivo data. Ex vivo biodistribution revealed a twofold higher [18F]F-DPA uptake in the vertebral body compared to that seen in the bone from the skull. CONCLUSIONS: [18F]F-DPA aided visualization of the spinal cord inflammation site in PSNL rats on ex vivo autoradiography and was superior to [11C]PK11195. In vivo [18F]F-DPA PET did not allow for visualization of tracer accumulation even using a high-spatial-resolution PET scanner. The main reason for this result was due to insufficient SUVs in the spinal cord region as compared with the background noise, in addition to a spillover from the vertebral body.


Subject(s)
Microglia , Neuralgia , Animals , Fluorine Radioisotopes , Microglia/pathology , Neuralgia/diagnostic imaging , Neuralgia/pathology , Positron-Emission Tomography/methods , Pyrazoles , Pyrimidines , Rats , Spinal Cord/diagnostic imaging , Tissue Distribution
4.
EJNMMI Phys ; 5(1): 37, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30569426

ABSTRACT

BACKGROUND: 15O-oxygen inhalation PET is unique in its ability to provide fundamental information regarding cerebral hemodynamics and energy metabolism in man. However, the use of 15O-oxygen has been limited in a clinical environment largely attributed to logistical complexity, in relation to a long study period, and the need to produce and inhale three sets of radiopharmaceuticals. Despite the recent works that enabled shortening of the PET examination period, radiopharmaceutical production has still been a limiting factor. This study was aimed to evaluate a recently developed radiosynthesis/inhalation system that automatically supplies a series of 15O-labeled gaseous radiopharmaceuticals of C15O, 15O2, and C15O2 at short intervals. METHODS: The system consists of a radiosynthesizer which produces C15O, 15O2, and C15O2; an inhalation controller; and an inhalation/scavenging unit. All three parts are controlled by a common sequencer, enabling automated production and inhalation at intervals less than 4.5 min. The gas inhalation/scavenging unit controls to sequentially supply of qualified radiopharmaceuticals at given radioactivity for given periods at given intervals. The unit also scavenges effectively the non-inhaled radioactive gases. Performance and reproducibility are evaluated. RESULTS: Using an 15O-dedicated cyclotron with deuteron of 3.5 MeV at 40 µA, C15O, 15O2, and C15O2 were sequentially produced at a constant rate of 1400, 2400, and 2000 MBq/min, respectively. Each of radiopharmaceuticals were stably inhaled at < 4.5 min intervals with negligible contamination from the previous supply. The two-hole two-layered face mask with scavenging device minimized the gaseous radioactivity surrounding subject's face, while maintaining the normocapnia during examination periods. Quantitative assessment of net administration doses could be assessed using a pair of radio-detectors at inlet and scavenging tubes, as 541 ± 149, 320 ± 103, 523 ± 137 MBq corresponding to 2-min supply of 2574 ± 255 MBq for C15O, and 1-min supply of 2220 ± 766 and 1763 ± 174 for 15O2 and C15O2, respectively. CONCLUSIONS: The present system allowed for automated production and inhalation of series of 15O-labeled radiopharmaceuticals as required in the rapid 15O-Oxygen PET protocol. The production and inhalation were reproducible and improved logistical complexity, and thus the use of 15O-oxygen might have become practically applicable in clinical environments.

5.
Sci Rep ; 8(1): 1347, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358724

ABSTRACT

As matrix metalloproteinases (MMPs), especially MMP-9 and MMP-12 are involved in the pathological processes associated with chronic obstructive pulmonary disease (COPD), we developed a novel radiofluorinated probe, 18F-IPFP, for MMPs-targeted positron emission tomography (PET). 18F-IPFP was designed by iodination of MMP inhibitor to enhance the affinity, and labelled with a compact prosthetic agent, 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP). As a result, IPFP demonstrated the highest affinity toward MMP-12 (IC50 = 1.5 nM) among existing PET probes. A COPD model was employed by exposing mice to cigarette smoke and the expression levels of MMP-9 and MMP-12 were significantly increased in the lungs. Radioactivity accumulation in the lungs 90 min after administration of 18F-IPFP was 4× higher in COPD mice than normal mice, and 10× higher than in the heart, muscle, and blood. Ex vivo PET confirmed the radioactivity distribution in the tissues and autoradiography analysis demonstrated that accumulation differences in the lungs of COPD mice were 2× higher than those of normal mice. These results suggest that 18F-IPFP is a promising probe for pulmonary imaging and expected to be applied to various MMP-related diseases for early diagnosis, tracking of therapeutic effects, and new drug development in both preclinical and clinical applications.


Subject(s)
Matrix Metalloproteinase Inhibitors/administration & dosage , Metalloendopeptidases/metabolism , Positron-Emission Tomography/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Radiopharmaceuticals/chemical synthesis , Animals , Azides , Disease Models, Animal , Humans , Lung/diagnostic imaging , Lung/metabolism , Matrix Metalloproteinase Inhibitors/chemistry , Mice , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Radiopharmaceuticals/chemistry , Smoking/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...