Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Genes Environ ; 42: 12, 2020.
Article in English | MEDLINE | ID: mdl-32175032

ABSTRACT

INTRODUCTION: Colibactin is a small genotoxic molecule produced by enteric bacteria, including certain Escherichia coli (E. coli) strains harbored in the human large intestine. This polyketide-peptide genotoxin is considered to contribute to the development of colorectal cancer. The colibactin-producing (clb +) microorganisms possess a 54-kilobase genomic island (clb gene cluster). In the present study, to assess the distribution of the clb gene cluster, genotyping analysis was carried out among E. coli strains randomly chosen from the Japan Collection of Microorganisms, RIKEN BRC, Japan. FINDINGS: The analysis revealed that two of six strains possessed a clb gene cluster. These clb + strains JCM5263 and JCM5491 induced genotoxicity in in vitro micronucleus (MN) tests using rodent CHO AA8 cells. Since the induction level of MN by JCM5263 was high, a bacterial umu test was carried out with a cell extract of the strain, revealing that the extract had SOS-inducing potency in the umu tester bacterium. CONCLUSION: These results support the observations that the clb gene cluster is widely distributed in nature and clb + E. coli having genotoxic potencies is not rare among microorganisms.

2.
J Toxicol Sci ; 44(12): 871-876, 2019.
Article in English | MEDLINE | ID: mdl-31813906

ABSTRACT

Colibactin is a polyketide-peptide genotoxin produced by enteric bacteria such as E. coli, and is considered to contribute to the development of colorectal cancer. We previously isolated E. coli strains from Japanese colorectal cancer patients, and in the present study we investigated the genotoxic potency of the colibactin-producing (clb+) E. coli strains that carry the polyketide synthases "pks" gene cluster (pks+) and an isogenic clb- mutant in which the colibactin-producing ability is impaired. Measurement of phosphorylated histone H2AX indicated that DNA double strand breaks were induced in mammalian CHO AA8 cells infected with the clb+ E. coli strains. Induction of DNA damage response (SOS response) by crude extract of the clb+ strains was 1.7 times higher than that of the clb- E. coli in an umu assay with a Salmonella typhimurium TA1535/pSK1002 tester strain. Micronucleus test with CHO AA8 cells revealed that infection with the clb+ strains induced genotoxicity, i.e., the frequencies of micronucleated cells infected with clb+ strain were 4-6 times higher than with the clb- strain. Since the intestinal flora are affected by dietary habits that are strongly associated with ethnicity, these data may contribute to both risk evaluation and prevention of colorectal cancer in the Japanese population.


Subject(s)
Colon/microbiology , Colorectal Neoplasms/microbiology , Escherichia coli/isolation & purification , Mutagens/toxicity , Peptides/toxicity , Polyketides/toxicity , Aged , Animals , CHO Cells , Cricetulus , DNA Breaks, Double-Stranded/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Male , Micronuclei, Chromosome-Defective/chemically induced , Mutagens/metabolism , Peptides/metabolism , Polyketides/metabolism , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
3.
Mutagenesis ; 24(3): 279-84, 2009 May.
Article in English | MEDLINE | ID: mdl-19273466

ABSTRACT

3,6-Dinitrobenzo[e]pyrene (3,6-DNBeP), newly identified in airborne particles and surface soil, is a potent mutagen in Salmonella typhimurium. The present study investigated the genotoxic potency of 3,6-DNBeP in vitro and in vivo using mammalian cell strains (Chinese hamster CHL/IU and human HepG2) and ICR mice, respectively. In the hprt gene mutation assay using HepG2 cells, the spontaneous mutant frequency was 61.1 per 10(5) clonable cells, which increased to 229 per 10(5) clonable cells after treatment with 1.0 microg/ml (3 microM) 3,6-DNBeP. Notably, in HepG2 cells with increased N-acetyltransferase 2 activity, the mutant frequency increased to 648 per 10(5) clonable cells by treatment of 1.0 microg/ml (3 microM) 3,6-DNBeP. The sister chromatid exchange frequency increased approximately three times the control level in HepG2 cells treated with 3,6-DNBeP at a concentration of 1.0 microg/ml (3 microM). In HepG2 and CHL/IU cells, the frequency of the cells with micronuclei was 0.9 and 1.2%, and the frequencies increased to 2.3 and 7.6% after 1.0 microg/ml (3 microM) 3,6-DNBeP-treatment, respectively. The H2AX phosphorylation level increased 8-fold compared with the background level with 1.0 microg/ml (3 microM) 3,6-DNBeP-treatment in HepG2 cells. Moreover, the comet assay showed that 3,6-DNBeP produced DNA damage in the cells of liver, kidney, lung and bone marrow in ICR mice 3 h after intraperitoneal injection at 40 mg/kg (0.12 mmol/kg) body weight. These data indicate that 3,6-DNBeP is genotoxic to mammalian cells in vitro and in vivo.


Subject(s)
Benzo(a)pyrene/analogs & derivatives , Environmental Pollutants/toxicity , Mutation/drug effects , Sister Chromatid Exchange/drug effects , Animals , Benzo(a)pyrene/chemistry , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Comet Assay , Cricetinae , Cricetulus , DNA Primers/genetics , Histones/metabolism , Humans , Mice , Mice, Inbred ICR , Micronucleus Tests , Molecular Structure , Phosphorylation/drug effects , Reverse Transcriptase Polymerase Chain Reaction
4.
Environ Sci Technol ; 38(23): 6424-9, 2004 Dec 01.
Article in English | MEDLINE | ID: mdl-15597900

ABSTRACT

The estrogenic activity in water at various localities on Lake Biwa-Yodo River, a representative watershed in Japan, was measured using a recombinant yeast that expresses the human estrogen receptor. The yeast bioassay revealed that the activities of 13 water samples had an average value of 14 pmol/L (3.8 ng/L) (17beta-estradiol equivalent) with a very wide range from 0 to 72 pmol/L (0-19.6 ng/ L), and two of the samples had prominent levels of activity (72 pmol/L (19.6 ng/L) and 56 pmol/L (15.2 ng/L)). We analyzed these two samples with instrumental approaches. A high-performance liquid chromatogram profile showed that the strong activity in one sample, which was collected just downstream of a sewage-treatment plant, would be due to 17beta-estradiol and estrone, whose source is considered to be human urine contained in the effluent of the plant. The activity in the other sample, which was obtained from a tributary river in a primarily residential area with some industrial development (i.e., Osaka City), however, did not correspond to 17beta-estradiol, estrone, or synthetic chemicals known as estrogenic. Analysis of a fraction with estrogenic activity by liquid chromatography-mass spectrometry (LC-MS) provided evidence that the activity in the water sample resulted from the presence of genistein, an isoflavone compound of plant origin.


Subject(s)
Estrogens/urine , Genistein/urine , Rivers/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Estrogens/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Japan , Receptors, Estrogen/drug effects , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL