Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nanoscale ; 13(23): 10356-10364, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34105564

ABSTRACT

Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control.

2.
ACS Appl Mater Interfaces ; 12(52): 57881-57887, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33332084

ABSTRACT

A highly crystalline pomegranate-like base-acid bifunctional beta zeolite was successfully synthesized by the steam-assisted crystallization method using a basic nitrided N-beta as the starting material. The secondary crystal growth of a beta zeolite generating acid functionality occurred over the outer surface and intercrystalline void spaces of the N-beta zeolite. The pomegranate-like N-beta@H-beta zeolite had a high surface area and base-acid dual functionality because of the well-connected framework topologies of the H-beta and N-beta crystallites. The N-beta@H-beta zeolite exhibited a superior yield of benzylidenemalononitrile during the tandem deacetalization-Knoevenagel condensation of benzaldehyde dimethyl acetal and malononitrile compared to H-beta, N-beta, and their physical mixture. This is likely due to the isolated and balanced activity of the base- and acid-catalyzed reactions.

3.
J Nanosci Nanotechnol ; 16(1): 1038-45, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27398566

ABSTRACT

The thermal behavior of silicon nanoparticles (Si NPs) was investigated for the preparation of silicon thin film using a solution process. TEM analysis of Si NPs, synthesized by inductively coupled plasma, revealed that the micro-structure of the Si NPs was amorphous and that the Si NPs had melted and merged at a comparatively low temperature (~750 °C) considering bulk melting temperature of silicon (1414 °C). A silicon ink solution was prepared by dispersing amorphous Si NPs in propylene glycol (PG). It was then coated onto a silicon wafer and a quartz plate to form a thin film. These films were annealed in a vacuum or in an N2 environment to increase their film density. N2 annealing at 800 °C and 1000 °C induced the crystallization of the amorphous thin film. An elemental analysis by the SIMS depth profile showed that N2annealing at 1000 °C for 180 min drastically reduced the concentrations of carbon and oxygen inside the silicon thin film. These results indicate that silicon ink prepared using amorphous Si NPs in PG can serve as a proper means of preparing silicon thin film via solution process.

4.
Angew Chem Int Ed Engl ; 54(32): 9230-4, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26087961

ABSTRACT

To promote the oxygen reduction reaction of metal-free catalysts, the introduction of porous structure is considered as a desirable approach because the structure can enhance mass transport and host many catalytic active sites. However, most of the previous studies reported only half-cell characterization; therefore, studies on membrane electrode assembly (MEA) are still insufficient. Furthermore, the effect of doping-site position in the structure has not been investigated. Here, we report the synthesis of highly active metal-free catalysts in MEAs by controlling pore size and doping-site position. Both influence the accessibility of reactants to doping sites, which affects utilization of doping sites and mass-transport properties. Finally, an N,P-codoped ordered mesoporous carbon with a large pore size and precisely controlled doping-site position showed a remarkable on-set potential and produced 70% of the maximum power density obtained using Pt/C.

5.
J Nanosci Nanotechnol ; 10(1): 195-202, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20352833

ABSTRACT

In the present work, a variety of SAPO-34 catalysts have been prepared using various templates such as a single or mixtures of tetraethylammonium hydroxide (TEAOH), morpholine, diethylamine (DEA), triethylamine (TEA), dipropylamine (DPA), isopropylamine (IPA) and Diethanolamine (DEtA). It is shown that crystal morphology and physicochemical properties were affected by the kinds of templates and mixture contents. Especially, inexpensive SAPO-34 catalyst with good crystal properties and catalytic performance was obtained by using mixed template of DEA and TEAOH. Through N2 isotherm, XRD, SEM, NH3 TPD and 29Si-NMR techniques, the effect of mixed template on the crystal morphology, acidity and Si distribution were investigated. Catalytic activity and life stability of SAPO-34 in MTO reaction was improved by using mixed template because of the distinction of the crystal size, acidity and Si distribution.

6.
J Am Chem Soc ; 131(36): 13080-92, 2009 Sep 16.
Article in English | MEDLINE | ID: mdl-19694427

ABSTRACT

The titanate quantum wires in ETS-10 crystals remain intact during ion exchange of the pristine cations (Na(+)(0.47) + K(+)(0.53)) with M(n+) ions (M(n+) = Na(+), K(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Pb(2+), Cd(2+), Zn(2+)) and during reverse exchange of the newly exchanged cations with Na(+). The binding energies of O(1s) and Ti(2p) decrease as the electronegativity of the cation decreases, and they are inversely proportional to the negative partial charge of the framework oxygen [-delta(O(f))]. At least five different oxygen species were identified, and their binding energies (526.1-531.9 eV) indicate that the titanate-forming oxides are much more basic than those of aluminosilicate zeolites (530.2-533.3 eV), which explains the vulnerability of the quantum wire to acids and oxidants. The chemical shifts of the five NMR-spectroscopically nonequivalent Si sites, delta(I(A)), delta(I(B)), delta(II(A)), delta(II(B)), and delta(III), shift downfield as -delta(O(f)) increases, with slopes of 2.5, 18.6, 133.5, 216.3, and 93.8 ppm/[-delta(O(f))], respectively. The nonuniform responses of the chemical shifts to -delta(O(f)) arise from the phenomenon that the cations in the 12-membered-ring channels shift to the interiors of the cages surrounded by four seven-membered-ring windows. On the basis of the above, we assign delta(I(A)), delta(I(B)), delta(II(A)), and delta(II(B)) to the chemical shifts arising from Si(12,12), Si(12,7), Si(7,12), and Si(7,7) atoms, respectively. The frequency of the longitudinal stretching vibration of the titanate quantum wire increases linearly and the bandwidth decreases nonlinearly with increasing -delta(O(f)), indicating that the titanate quantum wire resembles a metallic carbon nanotube. As the degree of hydration increases, the vibrational frequency shifts linearly to higher frequencies while the bandwidth decreases. We identified another normal mode of vibration of the quantum wire, which vibrates in the region of 274-280 cm(-1). In the dehydrated state, the band-gap energy and the first absorption maximum shift to lower energies as -delta(O(f)) increases, indicating the oxide-to-titanium(IV) charge-transfer nature of the transitions.


Subject(s)
Silicates/chemistry , Titanium/chemistry , Crystallization , Magnetic Resonance Spectroscopy , Metals/chemistry , Models, Molecular , X-Ray Diffraction
7.
Chemistry ; 15(3): 612-22, 2009.
Article in English | MEDLINE | ID: mdl-19065687

ABSTRACT

Analogues of 4-dodecyloxy-2-trifluoromethylbenzamide (12FH2) consisting of a hydrophobic alkyl chain, a trifluoromethylated aromatic ring, and a self-complementary hydrogen-bonding amido group were synthesized, and the structural effect of each component on the formation of parallelogrammatic pipes was investigated. Differential scanning calorimetry and powder XRD analyses revealed that all-trans L and gauche-rich S polymorphic forms appeared for the analogues with more than eight carbon atoms in the alkyl chain, that is, the polymorphism originates in the conformation of the alkyl groups and hydrogen-bonding patterns of the benzamide group. Also, the trifluoromethyl substituent is crucial in that it provides an appropriate molecular balance between the benzamide and alkyl groups. Scanning electron microscopy and powder XRD analyses of solids obtained by a drying-mediated assembly process revealed that production of the L polymorph by polymorphic transition from the S polymorph resulted in evolution of a three-dimensional structure when the alkyl group has more than 12 carbon atoms. Among the series of compounds, 12FH2 and 4-tetradecyloxy-2-trifluoromethylbenzamide (14FH2) formed parallelogrammatic pipes with micrometer dimensions. An atomic force microscopy study of 12FH2 suggested that a single pipe may be composed of platelike crystallites of L polymorph. From a mercury-intrusion porosimetry study, it was determined that macroporous materials with average pore diameters of about 40 microm and porosity of about 80% were obtained. The previously proposed self-templation mechanism by polymorphic transition from S to L polymorph was further discussed in view of polymorphism and the crystallization rate. An appropriate molecular balance between the benzamide and alkyl groups is necessary to induce a proper polymorphic transition for the development of a three-dimensional hollow structure in the evaporation process.

8.
J Am Chem Soc ; 129(35): 10870-85, 2007 Sep 05.
Article in English | MEDLINE | ID: mdl-17696433

ABSTRACT

The synthesis, crystal structure, characterization, and catalytic properties of the novel medium-pore zeolite TNU-9 (framework type TUN), one of the most crystallographically complex zeolites known to date, are described. TNU-9 was found to crystallize under hydrothermal conditions at the expense of a lamellar precursor over a very narrow range of SiO(2)/Al(2)O(3) and NaOH/SiO(2) ratios and in the presence of 1,4-bis(N-methylpyrrolidinium)butane and Na+ ions as structure-directing agents. A combination of molecular modeling and Rietveld refinement using synchrotron powder diffraction data confirms the proposed topology of as-made TNU-9 and suggests three or possibly four different sites for the organic within the complex pore structure. The proton form (H-TNU-9) of this new medium-pore zeolite exhibits exceptionally high hydrothermal stability, as well as very strong acidity. When compared to H-ZSM-5, H-MCM-22, H-mordenite, and H-Beta, H-TNU-9 displays unique shape selectivities for the acid-catalyzed reactions of monoaromatic hydrocarbons such as the disproportionation of toluene and the isomerization and disproportionation of m-xylene. In particular, for the isomerization of m-xylene, the ratio of isomerization to disproportionation increases steadily to values in excess of 50 with prolonged time on stream and a high p/o xylene ratio is observed in the products, achieving a value of ca. 6 after only a short time on stream. These results are rationalized on the basis of the unique pore topology of TNU-9.


Subject(s)
Silicon Dioxide/chemistry , Zeolites/chemistry , Catalysis , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
9.
J Phys Chem B ; 110(16): 8188-93, 2006 Apr 27.
Article in English | MEDLINE | ID: mdl-16623495

ABSTRACT

The host-guest interactions in AlPO4-11, AlPO4-31, SAPO-34, and AlPO4-41 molecular sieves prepared using the same organic structure-directing agent, i.e., dipropylamine, are investigated by a combination of Raman, 13C and 1H MAS NMR, and computer modeling studies. It was found that the organic molecules trapped within the pores of these four AlPO4-based materials exist as their protonated form and adopt distinct conformations in order to fit well with the pore structure of each host. In particular, the presence of two different types of conformations of protonated dipropylamine in the circular 12-ring channels of AlPO4-31 has been ascertained.


Subject(s)
Aluminum Compounds/chemistry , Phosphates/chemistry , Propylamines/chemistry , Silicon Compounds/chemistry , Aluminum Compounds/chemical synthesis , Chromatography, Gel , Computer Simulation , Indicators and Reagents , Magnetic Resonance Spectroscopy , Models, Chemical , Models, Molecular , Molecular Conformation , Monte Carlo Method , Phosphates/chemical synthesis , Spectrum Analysis, Raman , X-Ray Diffraction
10.
J Am Chem Soc ; 128(3): 688-9, 2006 Jan 25.
Article in English | MEDLINE | ID: mdl-16417336

ABSTRACT

We synthesized uniform pore-sized mesoporous silica spheres embedded with magnetite nanocrystal and quantum dots. The magnetic separation, luminescent detection, and controlled release of drugs were demonstrated using the uniform mesoporous silica spheres embedded with monodisperse nanocrystals.

11.
Chem Commun (Camb) ; (48): 6035-7, 2005 Dec 28.
Article in English | MEDLINE | ID: mdl-16333519

ABSTRACT

Combining both nano-replication and nano-imprinting techniques using dual silica templates provides a simple way to synthesize ordered mesoporous carbons with bimodal pore size distributions ( approximately 1.5 nm and approximately 3.5 nm).

13.
J Phys Chem B ; 109(44): 20847-53, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16853703

ABSTRACT

The solid-state NMR evidence that Si atoms are not randomly distributed in microporous SAPO-35 materials with the LEV topology and their distribution is governed by the Si content in synthesis mixtures is presented. It is also shown that the extraction pattern of Si atoms from the two distinct tetrahedral sites of the SAPO-35 framework during the calcination step at elevated temperatures occurs in a nonrandom manner, which can be rationalized by considering the expected strain on each topologically distinct site. The overall results of this study reveal that, when the level of Si substitution in SAPO-35 materials is high enough to produce various heterogeneous Si environments other than Si(4Al) species having P atoms only as second-nearest T-atom neighbors, the oxide composition of the domain preferentially created is aluminosilicate rather than pure silica in nature.

14.
J Am Chem Soc ; 126(42): 13742-51, 2004 Oct 27.
Article in English | MEDLINE | ID: mdl-15493933

ABSTRACT

Here, we report that synthetic gallosilicate molecular sieves with the NAT topology and Si/Ga ratios close to but slightly higher than 1.50 undergo an in situ transformation under their crystallization conditions. The materials have been studied ex situ by using powder X-ray diffraction, elemental and thermal analyses, and multinuclear MAS NMR. The transformation is characterized by a change in the distribution of Si and Ga of the NAT framework, from a quite (but not completely) disordered phase to a very highly (but not completely) ordered one, accompanied by a change from tetragonal to orthorhombic symmetry. During most of the solution-mediated transformation, no noticeable signs of fresh precipitation, phase segregation, or changes in the chemical composition are detected. Intermediate materials show variations in the degree of Si-Ga ordering and orthorhombic distortion and are not physical mixtures of the disordered and ordered phases. Ab initio calculations strongly suggest a preferential siting of Si in the tetrahedral sites involved in a smaller number of 4-rings in the NAT topology (i.e., the low multiplicity site). The cost of violations of Loewenstein's rule has also been calculated. For this topology and chemical composition the preferential siting and Loewenstein's rule drive together the system to the ordered configuration. A Monte Carlo sampling procedure affords a reasonable model for the initial, mainly disordered state, which fits well within the experimental disorder-order series.

15.
J Am Chem Soc ; 126(18): 5817-26, 2004 May 12.
Article in English | MEDLINE | ID: mdl-15125674

ABSTRACT

A high-silica zeolite (Si/Al = 7.1) with the STI framework topology, denoted TNU-10, has been synthesized in the presence of 1,4-bis(N-methylpyrrolidinium)butane and Na(+) cations as structure-directing agents, and its structure in the proton form has been refined against laboratory powder X-ray data in space group Fmmm (a = 13.533(1) A, b = 17.925(2) A, c = 17.651(2) A). The space group symmetry is supported by electron diffraction and energy minimization studies. The as-made and proton form of TNU-10 are extensively characterized by elemental and thermal analyses, scanning electron microscopy, N(2) adsorption, multinuclear solid-state NMR, IR, and temperature-programmed desorption of ammonia, and the location of the organic structure-directing agent in the channel system is determined by molecular modeling. The catalytic properties of H-TNU-10 and Co-TNU-10 are evaluated for the skeletal isomerization of 1-butene to isobutene and the selective reduction of NO with methane, respectively. When compared to H-ferrierite, a low selectivity to isobutene is observed for H-TNU-10. However, it is found that Co-TNU-10 exhibits a maximum NO conversion of 93% at 823 K under conditions of high concentrations of methane (16,000 ppm) and water vapor (10%) and in the presence of 2.6% O(2), which is considerable higher than even the value (74%) obtained from Co-ferrierite, known as the best catalyst for this reaction, under the identical conditions.

16.
Chem Commun (Camb) ; (5): 562-3, 2004 Mar 07.
Article in English | MEDLINE | ID: mdl-14973608

ABSTRACT

Mesocellular polymer foams with uniform approximately 17 nm cellular pores were fabricated using mesocellular silica foams as inorganic templates. The mesocellular polymer foams have high surface areas up to approximately 600 m(2)g(-1) and pore volumes of 1.6 cm(3)g(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...