Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(22): 26660-26669, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37212378

ABSTRACT

Here, we investigate the nonlinear relationship between the content of solid electrolytes in composite electrodes and the irreversible capacity via the degree of nanoscale uniformity of the surface morphology and chemical composition of the solid electrolyte interphase (SEI) layer. Using electrochemical strain microscopy (ESM) and X-ray photoelectron spectroscopy (XPS), changes of the chemical composition and morphology (Li and F distribution) in SEI layers on the electrodes as a function of solid electrolyte contents are analyzed. As a result, we find that the solid electrolyte content affects the variation of the SEI layer thickness and chemical distributions of Li and F ions in the SEI layer, which, in turn, influence the Coulombic efficiency. This correlation determines the composition of the composite electrode surface that can maximize the physical and chemical uniformity of the solid electrolyte on the electrode, which is a key parameter to increase electrochemical performance in solid-state batteries.

2.
ACS Appl Mater Interfaces ; 15(23): 28064-28072, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37218997

ABSTRACT

All-solid-state batteries (ASBs) have been identified as a potential next-generation technology for safe energy storage. However, the current pellet form of solid electrolytes (SEs) exhibits low cell-level energy densities and mechanical brittleness, and this has hampered the commercialization of ASBs. In this work, we report on the development of an ultrathin SE membrane that can be reduced to a thickness of 31 µm with minimal thermal shrinkage at 140 °C, while exhibiting robust mechanical properties (tensile strength of 19.6 MPa). Due to its exceptional ionic conductivity of 0.55 mS/cm and the corresponding areal conductance of 84 mS/cm2, the SE membrane-incorporated ASB displays cell-level gravimetric and volumetric energy densities of 127.9 Wh/kgcell and 140.7 Wh/Lcell, respectively. These values represent a 7.6- and 5.7-fold increase over those achieved with conventional SE pellet cells. Our results demonstrate the potential of the developed SE membrane to overcome the critical challenges in the commercialization of ASBs.

3.
ACS Appl Mater Interfaces ; 15(10): 13131-13143, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36791219

ABSTRACT

Problematic issues with electrically inert binders have been less serious in the conventional lithium-ion batteries by virtue of permeable liquid electrolytes (LEs) for ionic connection and/or carbonaceous additives for electronic connection in the electrodes. Contrary to electron-conductive binders used to maximize an active loading level, the development of ion-conductive binders has been lacking owing to the LE-filled electrode configuration. Herein, we represent a tactical strategy for improving the interfacial Li+ conduction in all-solid-state electrolyte-free graphite (EFG) electrodes where the solid electrolytes are entirely excluded, using lithium-substitution-modulated (LSM) binders. Finely tuning a lithium substitution ratio, a conductive LSM-carboxymethyl cellulose (CMC) binder is prepared from a controlled direct Na+/Li+ exchange reaction without a hazardous acid involvement. The EFG electrode employing LSM with a maximum degree of substitution of lithium (DSLi) of ∼68% in our study shows a considerably higher rate capability of 1.05 mA h cm-2 at 1 C and a capacity retention of ∼61.9% after 200 cycles at 0.5 C than those using sodium-CMC (Na-CMC) (0.78 mA h cm-2, ∼49.5%) and LSM with ∼35% lithium substitution (0.93 mA h cm-2, ∼55.4%). More importantly, the correlation between the phase transition near the bottom region of the EFG electrode and the state of charge (SOC) is systematically investigated, clarifying that the improvement of the interfacial conduction is proportional to the DSLi of the CMC binders. Theoretical calculations combined with experimental results further verify that creating the continuous interface through abundant pathways for mobile ions using the Li+-conductive binder is the enhancement mechanism of the interfacial conduction in the EFG electrode, mitigating serious charge transfer resistance.

4.
Nano Lett ; 19(12): 8793-8800, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31675476

ABSTRACT

Volumetric energy density is considered a primary factor in developing high-energy batteries. Despite its significance, less efforts have been devoted to its improvement. Silicon-based materials have emerged as next-generation anodes for lithium-ion batteries due to their high specific capacity. However, their volumetric capacities are limited by the volume expansion rate of silicon, which restricts mass loading in the electrodes. To address this challenge, we introduce porous silicon templated from earth-abundant minerals with native internal voids, capable of alleviating volumetric expansion during repeated cycles. In situ transmission electron microscopy analysis allows the precise determination of the expansion rate of silicon, thus presenting an analytical model for finding the optimal content in silicon/graphite composites. The inner pores in silicon reduce problems associated with its expansion and allow higher silicon loading of 42% beyond the conventional limitations of 13-14%. Consequently, the anode designed in this work can deliver a volumetric capacity of 978 mAh cc-1. Thus, suppressing volume expansion with natural abundant template-assisted materials opens new avenues for cost-effective fabrication of high volumetric capacity batteries.

5.
Sci Rep ; 9(1): 2464, 2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30792437

ABSTRACT

Functional separators, which have additional functions apart from the ionic conduction and electronic insulation of conventional separators, are highly in demand to realize the development of advanced lithium ion secondary batteries with high safety, high power density, and so on. Their fabrication is simply performed by additional deposition of diverse functional materials on conventional separators. However, the hydrophobic wetting nature of conventional separators induces the polarity-dependent wetting feature of slurries. Thus, an eco-friendly coating process of water-based slurry that is highly polar is hard to realize, which restricts the use of various functional materials dispersible in the polar solvent. This paper presents a surface modification of conventional separators that uses a solution-based coating of graphene oxide with a hydrophilic group. The simple method enables the large-scale tuning of surface wetting properties by altering the morphology and the surface polarity of conventional separators, without significant degradation of lithium ion transport. On the surface modified separator, superior wetting properties are realized and a functional separator, applicable to lithium metal secondary batteries, is demonstrated as an example. We believe that this simple surface modification using graphene oxide contributes to successful fabrication of various functional separators that are suitable for advanced secondary batteries.

6.
Nanoscale ; 10(1): 100-108, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-29210423

ABSTRACT

Transparent conducting electrodes (TCEs) are essential components in various optoelectronic devices. Nanostructured metallic thin film is one of the promising candidates to complement current metal oxide films, such as ITO, where high cost rare earth elements have been a longstanding issue. Herein, we present that multiscale porous metal nanomesh thin films prepared by bimodal self-assembly of block copolymer (BCP)/homopolymer blends may offer a new opportunity for TCE. This hierarchical concurrent self-assembly consists of macrophase separation between BCP and homopolymer as well as microphase separation of BCP, and thus provides a straightforward spontaneous production of a highly porous multiscale pattern over an arbitrary large area. Employing a conventional pattern transfer process, we successfully demonstrated a multiscale highly porous metallic thin film with reasonable optical transparency, electro-conductance, and large-area uniformity, taking advantage of low loss light penetration through microscale pores and significant suppression of light reflection at the nanoporous structures. This well-defined controllable bimodal self-assembly can offer valuable opportunities for many different applications, including optoelectronics, energy harvesting, and membranes.

7.
Adv Mater ; 28(38): 8439-8445, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27488974

ABSTRACT

High-resolution (10 nm), high-areal density, high-aspect ratio (>5), and morphologically complex nanopatterns are fabricated from a single conventional block copolymer (BCP) structure with a 70 nm scale resolution and an aspect ratio of 1, through the secondary-sputtering phenomenon during the Ar-ion-bombardment process. This approach provides a foundation for the design of new routes to BCP lithography.

8.
Sci Rep ; 5: 18053, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666197

ABSTRACT

Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the three dimensionally connected Li ion movement when heavily doped according to the structural refinement and the DFT calculations. In this report, we demonstrate that the multi-doping using additional Ta dopants into the Al-doped LLZO shifts the most energetically favorable sites of Al in the crystal structure from 24d to 96 h Li site, thereby providing more open space for Li ion transport. As a result of these synergistic effects, the multi-doped LLZO shows about three times higher ionic conductivity of 6.14 × 10(-4) S cm(-1) than that of the singly-doped LLZO with a much less efforts in stabilizing cubic phases in the synthetic condition.

9.
Nano Lett ; 13(11): 5720-6, 2013.
Article in English | MEDLINE | ID: mdl-24083558

ABSTRACT

Nanoscale alloys attract enormous research attentions in catalysis, magnetics, plasmonics and so on. Along with multicomponent synergy, quantum confinement and extreme large surface area of nanoalloys offer novel material properties, precisely and broadly tunable with chemical composition and nanoscale dimension. Despite substantial progress of nanoalloy synthesis, the randomized positional arrangement and dimensional/compositional inhomogeneity of nanoalloys remain significant technological challenges for advanced applications. Here we present a generalized route to synthesize single-crystalline intermetallic nanoalloy arrays with dimensional and compositional uniformity via self-assembly. Specific electrostatic association of multiple ionic metal complexes within self-assembled nanodomains of block copolymers generated patterned monodisperse bimetallic/trimetallic nanoalloy arrays consisting of various elements, including Au, Co, Fe, Pd, and Pt. The precise controllability of size, composition, and intermetallic crystalline structure of nanoalloys facilitated tailored synergistic properties, such as accelerated catalytic growth of vertical carbon nanotubes from Fe-Co nanoalloy arrays.

10.
ACS Nano ; 7(10): 8899-907, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24007296

ABSTRACT

Complex nanopatterns integrating diverse nanocomponents are crucial requirements for advanced photonics and electronics. Currently, such multicomponent nanopatterns are principally created by colloidal nanoparticle assembly, where large-area processing of highly ordered nanostructures raises significant challenge. We present multicomponent nanopatterns enabled by block copolymer (BCP) self-assembly, which offers device oriented sub-10-nm scale nanopatterns with arbitrary large-area scalability. In this approach, BCP nanopatterns direct the nanoscale lateral ordering of the overlaid second level BCP nanopatterns to create the superimposed multicomponent nanopatterns incorporating nanowires and nanodots. This approach introduces diverse chemical composition of metallic elements including Au, Pt, Fe, Pd, and Co into sub-10-nm scale nanopatterns. As immediate applications of multicomponent nanopatterns, we demonstrate multilevel charge-trap memory device with Pt-Au binary nanodot pattern and synergistic plasmonic properties of Au nanowire-Pt nanodot pattern.

12.
Nanotechnology ; 23(25): 255301, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22652564

ABSTRACT

Mushroom-shaped phase change memory (PCM) consisting of a Cr/In(3)Sb(1)Te(2) (IST)/TiN (bottom electrode) nanoarray was fabricated via block copolymer lithography and single-step dry etching with a gas mixture of Ar/Cl(2). The process was performed on a high performance transparent glass-fabric reinforced composite film (GFR Hybrimer) suitable for use as a novel substrate for flexible devices. The use of GFR Hybrimer with low thermal expansion and flat surfaces enabled successful nanoscale patterning of functional phase change materials on flexible substrates. Block copolymer lithography employing asymmetrical block copolymer blends with hexagonal cylindrical self-assembled morphologies resulted in the creation of hexagonal nanoscale PCM cell arrays with an areal density of approximately 176 Gb/in(2).

13.
Small ; 8(10): 1563-9, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22378625

ABSTRACT

A highly efficient, ultralarge-area nanolithography that integrates block-copolymer lithography with single-step ZnO nanoimprinting is introduced. The UV-assisted imprinting of a photosensitive sol-gel precursor creates large-area ZnO topographic patterns with various pattern shapes in a single-step process. This straightforward approach provides a smooth line edge and high thermal stability of the imprinted ZnO pattern; these properties are greatly advantageous for further graphoepitaxial block-copolymer assembly. According to the ZnO pattern shape and depth, the orientation and lateral ordering of self-assembled cylindrical nanodomains in block-copolymer thin films could be directed in a variety of ways. Significantly, the subtle tunability of ZnO trench depth enabled by nanoimprinting, generated complex hierarchical nanopatterns, where surface-parallel and surface-perpendicular nanocylinder arrays are alternately arranged. The stability of this complex morphology is confirmed by self-consistent field theory (SCFT) calculations. The highly ordered graphoepitaxial nanoscale assembly achieved on transparent semiconducting ZnO substrates offers enormous potential for photonics and optoelectronics.

14.
J Pain Symptom Manage ; 43(3): 606-13, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22337351

ABSTRACT

CONTEXT: In applying good energy conservation strategies to relieve cancer-related fatigue, it is critical to first identify cancer patients who are at a high risk for poor energy conservation. However, instruments have not been developed to evaluate energy conservation strategies in an oncology setting. OBJECTIVES: The aim of this study was to validate an instrument that cancer patients may use to evaluate energy conservation strategies to overcome cancer-related fatigue. METHODS: The questionnaire development followed a four-phase process: 1) item generation and reduction, 2) construction, 3) pilot testing, and 4) field testing. Using relevant and priority criteria, as well as pilot testing, we developed a 25-item questionnaire. After field testing, five items were discarded. Finally, 20 items were included in the Energy Conservation Strategies Inventory (ECSI). Factor analysis, multitrait scaling analysis, and Cronbach's α were used to determine the construct validity and reliability. RESULTS: Factor analyses of data from 140 cancer patients resulted in the ECSI, which covers activities related to planning, overcoming distractions, labor saving, burden reducing, and comfort. All subscales (Cronbach's α range, 0.69-0.78) and total scores (Cronbach's α=0.87) were found to possess acceptable internal consistency. CONCLUSIONS: The good psychometric properties of the ECSI instrument show that it may be useful for measuring the frequency of energy conservation strategies used by cancer patients.


Subject(s)
Energy Metabolism/physiology , Fatigue/diagnosis , Fatigue/therapy , Neoplasms/complications , Adult , Aged , Factor Analysis, Statistical , Fatigue/etiology , Female , Humans , Male , Middle Aged , Psychometrics , Quality of Life , Reproducibility of Results , Research Design , Surveys and Questionnaires
16.
Adv Mater ; 23(47): 5618-22, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22021119

ABSTRACT

Mussel-inspired interfacial engineering is synergistically integrated with block copolymer (BCP) lithography for the surface nanopatterning of low surface energy substrate materials, including, Teflon, graphene, and gold. The image shows the Teflon nanowires and their excellent superhydrophobicity.


Subject(s)
Gold/chemistry , Graphite/chemistry , Nanostructures/chemistry , Polytetrafluoroethylene/chemistry , Printing/methods , Adhesives , Hydrophobic and Hydrophilic Interactions , Particle Size , Surface Properties
18.
J Korean Med Sci ; 26(1): 33-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21218027

ABSTRACT

This study was conducted to evaluate treatment outcome, mortality, and predictors of both in patients with multidrug-resistant tuberculosis (MDR-TB) at 3 TB referral hospitals in the public sector of Korea. We included MDR-TB patients treated at 3 TB referral hospitals in 2004 and reviewed retrospectively their medical records and mortality data. Of 202 MDR-TB patients, 75 (37.1%) had treatment success and 127 (62.9%) poor outcomes. Default rate was high (37.1%, 75/202), comprising 59.1% of poor outcomes. Male sex (adjusted odds ratio [aOR], 2.91; 95% confidence interval [CI], 1.13-7.49), positive smear at treatment initiation (aOR, 5.50; 95% CI, 1.22-24.90), and extensively drug-resistant TB (aOR, 10.72; 95% CI, 1.23-93.64) were independent predictors of poor outcome. The all-cause mortality rate was 31.2% (63/202) during the 3-4 yr after treatment initiation. In conclusion, the treatment outcomes of patients with MDR-TB at the 3 TB hospitals are poor, which may reflect the current status of MDR-TB in the public sector of Korea. A more comprehensive program against MDR-TB needs to be integrated into the National Tuberculosis Program of Korea.


Subject(s)
Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Demography , Drug Resistance, Multiple, Bacterial , Drug Therapy, Combination , Female , Hospitals, Chronic Disease , Humans , Male , Middle Aged , Odds Ratio , Predictive Value of Tests , Retrospective Studies , Sex Factors , Treatment Outcome , Tuberculosis, Multidrug-Resistant/drug therapy
19.
Nano Lett ; 10(9): 3500-5, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-20677800

ABSTRACT

We accomplished a facile and scalable route to linearly stacked, one-dimensional metal nanowire assembly via soft graphoepitaxy of block copolymers. A one-dimensional nanoscale lamellar stack could be achieved by controlling the block copolymer film thickness self-assembled within the disposable topographic confinement and utilized as a template to generate linear metal nanowire assembly. The mechanism underlying this interesting morhpology evolution was investigated by self-consistent field theory. The optical properties of metal nanowire assembly involved with surface plasmon polariton were investigated by first principle calculations.

20.
ACS Nano ; 4(9): 5464-70, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20738125

ABSTRACT

We demonstrate a surface energy modification method exploiting graphene film. Spin-cast, atomic layer thick, large-area reduced graphene film successfully played the role of surface energy modifier for arbitrary surfaces. The degree of reduction enabled the tuning of the surface energy. Sufficiently reduced graphene served as a neutral surface modifier to induce surface perpendicular lamellae or cylinders in a block copolymer nanotemplate. Our approach integrating large-area graphene film preparation with block copolymer lithography is potentially advantageous in creating semiconducting graphene nanoribbons and nanoporous graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...