Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Invertebr Pathol ; 204: 108102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604562

ABSTRACT

The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.


Subject(s)
Microbiota , Tetranychidae , Animals , Tetranychidae/microbiology , Tetranychidae/physiology , Female , Pest Control, Biological
2.
Brain Neurorehabil ; 17(1): e1, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585029

ABSTRACT

This study aimed to identify the correlation between influencing factors of activities of daily living (ADLs), mental health, and health-related quality of life (HRQoL) among post-stroke patients who enrolled in a transitional care service in a public hospital. This cross-sectional study involved 67 stroke patients who were enrolled in a transitional care service and visited the outpatient clinic at a public hospital in Seoul between March and December 2022. Their general characteristics, ADLs, mental health, and HRQoL were assessed. The data were analyzed using independent samples t-tests, analysis of variance, and Pearson correlation analysis, and the influencing factors were analyzed using regression analysis. HRQoL showed a statistically significant difference between patients living in different types of arrangements (t = 2.50, p = 0.015), and patients scores on the modified Rankin Scale (t = 7.08, p < 0.001). HRQoL was also significantly correlated with ADLs and mental health in stroke patients (r = -0.59, p < 0.001; r = -0.41, p < 0.001, respectively). Meanwhile, stroke severity (ß = -0.30, p = 0.002), living arrangements (ß = -0.30, p = 0.009) and ADLs (ß = -0.45, p < 0.001) were found to influence HRQoL (F = 6.87, p < 0.001, R2 = 0.47). Reduced dependence for ADLs, improvements in symptoms consequent to stroke, and support related to living arrangements contributed to improved HRQoL and interventions for post-stroke patients in the transitional care service of a public hospital.

3.
PLoS One ; 19(3): e0299792, 2024.
Article in English | MEDLINE | ID: mdl-38536854

ABSTRACT

Two probiotic candidates, Lactobacillus reuteri C1 (C1) and Lactobacillus acidophilus C5 (C5), which were previously isolated from canines, were evaluated in the present study. L. reuteri and L. acidophilus have anti-oxidant, anti-inflammatory, immune-enhancing, and anti-cancer properties and exhibit various probiotic effects in humans and animals. The strains C1 and C5 demonstrated good tolerance to acid and bile salt exposure, exhibited effective adhesion to HT-29 cell monolayer, and displayed sensitivity to antibiotics, thus affirming their probiotic characteristics. Moreover, C1 and C5 exhibited the ability to downregulate the expression of inducible NO synthase (iNOS), an immunomodulatory factor, leading to a reduction in NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These strains also demonstrated potent anti-inflammatory effects in LPS-stimulated RAW 264.7 cells, achieved through the augmentation of anti-inflammatory cytokine IL-10 expression and the inhibition of pro-inflammatory cytokine IL-1ß expression. These anti-inflammatory effects of C1 and C5 were closely associated with the mitogen-activated protein kinase (MAPK) signaling pathway. The results of the present study suggest that the C1 and C5 probiotic candidates attenuate LPS-induced inflammation via the MAPK signaling pathway and the strains can be used as probiotics considering their anti-inflammatory potential.


Subject(s)
Limosilactobacillus reuteri , Probiotics , Humans , Animals , Dogs , Lactobacillus , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System , Cytokines/metabolism , Feces , Lactobacillus acidophilus/physiology , Probiotics/pharmacology , NF-kappa B/metabolism
4.
PLoS One ; 19(3): e0300719, 2024.
Article in English | MEDLINE | ID: mdl-38527055

ABSTRACT

Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.


Subject(s)
Lactation , Linoleic Acid , Female , Humans , Cattle , Animals , Lactation/physiology , Linoleic Acid/metabolism , Heat-Shock Response/physiology , Homeostasis , Fructose/metabolism , Hot Temperature , Milk/metabolism
5.
Materials (Basel) ; 17(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399205

ABSTRACT

This study critically reviews the key aspects of nanoparticles and their impact on molten salts (MSs) for thermal energy storage (TES) in concentrated solar power (CSP). It then conducts a comprehensive analysis of MS nanofluids, focusing on identifying the best combinations of salts and nanoparticles to increase the specific heat capacity (SHC) efficiently. Various methods and approaches for the synthesis of these nanofluids are explained. The article presents different experimental techniques used to characterize nanofluids, including measuring the SHC and thermal conductivity and analyzing particle dispersion. It also discusses the challenges associated with characterizing these nanofluids. The study aims to investigate the underlying mechanisms behind the observed increase in SHC in MS nanofluids. Finally, it summarizes potential areas for future research, highlighting crucial domains for further investigation and advancement.

6.
Materials (Basel) ; 17(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276444

ABSTRACT

In this study, a nanofluid composed of molten solar salt (MSS) and 1.0% SiO2 nanoparticles by mass was created and analyzed using differential scanning calorimetry (DSC) to determine its specific heat capacity (SHC). The SHC of the nanofluid was found to be significantly higher than that of pure MSS. The average increase in SHC of the nanofluid with 1.0% SiO2 nanoparticles (NPs) loading was found to be 15.65% compared with pure MSS. The formation of nanostructures after doping with NPs may increase the SHC of molten salt (MS) nanofluids, according to certain published research that included experimental confirmation. Nevertheless, no thorough theoretical or computational studies have been conducted to verify the experimental findings related to MSS nanofluid. Molecular dynamics (MD) simulations were conducted in various simulation boxes for different cases to verify the experimental findings and investigate the mechanism behind the enhancement of SHC caused by the addition of SiO2 NPs in eutectic MSS. The simulations used pure MSS and mixtures containing NaNO3 nanostructures bonded with SiO2 NPs. The highest SHC increase of 25.03% was observed when the simulation box contained 13.71% NaNO3 nanostructures by weight. The incorporation of NaNO3 nanostructures increased the surface area and total surface energy, leading to a positive effect on the SHC of the MSS nanofluid. However, the decrease in the base molten salt's SHC had a slight negative impact on the overall SHC of the MS nanofluid.

7.
J Biomol Struct Dyn ; 42(5): 2603-2615, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37139544

ABSTRACT

AIM2 and IFI16 are the most studied members of AIM2-like receptors (ALRs) in humans and share a common N-Terminal PYD domain and C-terminal HIN domain. The HIN domain binds to dsDNA in response to the invasion of bacterial and viral DNA, and the PYD domain directs apoptosis-associated speck-like protein via protein-protein interactions. Hence, activation of AIM2 and IFI16 is crucial for protection against pathogenic assaults, and any genetic variation in these inflammasomes can dysregulate the human immune system. In this study, different computational tools were used to identify the most deleterious and disease-causing non-synonymous single nucleotide polymorphisms (nsSNPs) in AIM2 and IFI16 proteins. Molecular dynamic simulation was performed for the top damaging nsSNPs to study single amino acid substitution-induced structural alterations in AIM2 and IFI16. The observed results suggest that the variants G13V, C304R, G266R, and G266D for AIM2, and G13E and C356F are deleterious and affect structural integrity. We hope that the suggested deleterious nsSNPs and structural dynamics of AIM2 and IFI16 variants will guide future research to better understand the function of these variants with large-scale studies and may assist in fresher therapeutics focusing on these polymorphisms.Communicated by Ramaswamy H. Sarma.


Subject(s)
DNA-Binding Proteins , Inflammasomes , Humans , DNA, Viral , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Polymorphism, Single Nucleotide , Computer Simulation
8.
Brain Neurorehabil ; 16(3): e30, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38047101

ABSTRACT

Intracerebral hemorrhage (ICH) is the second most common stroke subtype associated with high morbidity and mortality rates. Although various brain regions are susceptible to ICH, putaminal hemorrhage is the most common, whereas cortical ICH is less common. Here, we report the case of a 69-year-old man who developed a parietal cortical ICH. The patient developed hypoesthesia and paresthesia in the right upper lip and hand; however, the weakness was not severe. Twenty-five days after the ICH onset, the manual muscle test results were normal, but he had difficulty eating and shaving because of decreased hand dexterity. The rehabilitation focused on improving fine hand motor function and endurance. On the 94th day after ICH onset, paresthesia remained only in the fingertips, and the upper lip sensory change disappeared. Patients with sensory symptoms in the perioral area, hands, and brain lesions were previously referred to as having cheiro-oral syndrome (COS). With the advancement of neuroimaging, the use of this term has decreased, as cerebrovascular events can explain patient symptoms in correlation with neuroanatomy, etiology, and pathogenesis. We report a patient with cortical ICH, also known as COS, which is a stroke syndrome with a good prognosis.

9.
Anim Cells Syst (Seoul) ; 27(1): 180-186, 2023.
Article in English | MEDLINE | ID: mdl-37674816

ABSTRACT

Traditionally, the p-value is the criterion for the cutoff threshold to determine significant markers in genome-wide association studies (GWASs). Choosing the best subset of markers for the best linear unbiased prediction (BLUP) for improved prediction ability (PA) has become an interesting issue. However, when dealing with many traits having the same marker information, the p-values' themselves cannot be used as an obvious solution for having a confidence in GWAS and BLUP. We thus suggest a genomic estimated breeding value-assisted reduction method of the single nucleotide polymorphism (SNP) set (GARS) to address these difficulties. GARS is a BLUP-based SNP set decision presentation. The samples were Landrace pigs and the traits used were back fat thickness (BF) and daily weight gain (DWG). The prediction abilities (PAs) for BF and DWG for the entire SNP set were 0.8 and 0.8, respectively. By using the correlation between genomic estimated breeding values (GEBVs) and phenotypic values, selecting the cutoff threshold in GWAS and the best SNP subsets in BLUP was plausible as defined by GARS method. 6,000 SNPs in BF and 4,000 SNPs in DWG were considered as adequate thresholds. Gene Ontology (GO) analysis using the GARS results of the BF indicated neuron projection development as the notable GO term, whereas for the DWG, the main GO terms were nervous system development and cell adhesion.

10.
J Biomol Struct Dyn ; : 1-11, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561393

ABSTRACT

Today's era and lifestyle have led to a quick rise in cases of diabetes. Diabetes mellitus (DM) has risen to the top of the list of serious diseases and stems from different health disorders. Human pancreatic alpha-amylase (HPA) enzyme plays a critical role in the digestion of carbohydrates, and inhibitors of alpha-amylase have been investigated as a way to slow the absorption of carbohydrates and reduce postprandial (after meal) hyperglycemia in patients with diabetes. Recently algal derivatives have been studied for their potential as a new drug against diabetes and other diseases. The study is aimed to find active biochemical compounds from the methanolic extract of Chlorella vulgaris. The in vitro studies were carried out and the results revealed that methanolic extract from C. vulgaris showed abundant inhibition efficacy of the α-amylase (IC50 of about 2.66 µg/mL) compared to acarbose (IC50 of about 2.85 µg/mL), a standard, commercial inhibitor. All the bioactive compounds from the methanolic extract were identified from the GCMS study and considered for in silico evaluation. Out of 14 bioactive compounds from GCMS, compound C3 showed higher docking energy (-8.3 kcal/mol) compared to other compounds. Subsequently, the comparative molecular dynamic simulation of apo and ligand-bound (compound C3 and acarbose) α-amylase complexes showed overall structural stability for compound C3 at the active site of α-amylase from various MD analyses. Hence, we believe, the bioactive compounds identified from GCMS may assist in diabetic therapeutics. Moreover, the compound C3 identified in this study could be a potential antidiabetic therapeutic inhibitor.Communicated by Ramaswamy H. Sarma.

11.
Front Pediatr ; 11: 1196992, 2023.
Article in English | MEDLINE | ID: mdl-37325358

ABSTRACT

Introduction: Fever without a focus is a common reason for medical evaluations, hospitalizations, and the antimicrobial treatment of infants younger than 90 days. The presence of cerebrospinal fluid (CSF) pleocytosis could be challenge for clinicians who treat febrile young infants with urinary tract infection (UTI). We evaluated the factors associated with sterile CSF pleocytosis and the clinical outcomes of the patients. Methods: A retrospective review of patients aged 29-90 days with febrile UTIs who underwent a non-traumatic lumbar puncture (LP) at Pusan National University Hospital from January 2010 to December 2020 was conducted. CSF pleocytosis was defined as white blood cell (WBC) counts ≥9/mm3. Results: A total of 156 patients with UTI were eligible for this study. Four (2.6%) had concomitant bacteremia. However, no patients had culture-proven bacterial meningitis. In correlation analysis, although weak strength, CSF WBC counts were positively correlated with C-reactive protein (CRP) level (Spearman r = 0.234; P = 0.003). Thirty-three patients had CSF pleocytosis [21.2%; 95% confidential interval (CI), 15.5-28.2]. The time from fever onset to the hospital visit, peripheral blood platelet counts, and CRP level at admission were statistically significant in patients with sterile CSF pleocytosis compared to those without CSF pleocytosis. In the multiple logistic regression, only CRP was independently associated with sterile CSF pleocytosis (cutoff, 3.425 mg/dl; adjusted odds ratio, 2.77; 95% CI, 1.19-6.88). The proportion of fever defervescence by hospital day 2 was 87.9% in patients with CSF pleocytosis and 89.4% in those without CSF pleocytosis (P = 0.759). There was no statistical difference in the fever defervescence curves between the two patient groups (P = 0.567). No patients had neurological manifestations or complications. Conclusions: Coexisting sterile CSF pleocytosis among febrile infants with UTIs suggest a systemic inflammatory response. However, the clinical outcomes between the two groups were similar. A selective LP should be considered in young infants with evidence of UTI, and inappropriate antibiotic therapy for sterile CSF pleocytosis should be avoided.

12.
Comput Biol Med ; 160: 106978, 2023 06.
Article in English | MEDLINE | ID: mdl-37172355

ABSTRACT

Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 µs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Signal Transduction , Interleukin-1 Receptor-Associated Kinases/chemistry , Interleukin-1 Receptor-Associated Kinases/metabolism , Protein Kinase Inhibitors/pharmacology
13.
PLoS One ; 18(4): e0283364, 2023.
Article in English | MEDLINE | ID: mdl-37023008

ABSTRACT

Estrogen-related receptor gamma (ERRγ), the latest member of the ERR family, does not have any known reported natural ligands. Although the crystal structures of the apo, agonist-bound, and inverse agonist-bound ligand-binding domain (LBD) of ERRγ have been solved previously, their dynamic behavior has not been studied. Hence, to explore the intrinsic dynamics of the apo and ligand-bound forms of ERRγ, we applied long-range molecular dynamics (MD) simulations to the crystal structures of the apo and ligand-bound forms of the LBD of ERRγ. Using the MD trajectories, we performed hydrogen bond and binding free energy analysis, which suggested that the agonist displayed more hydrogen bonds with ERRγ than the inverse agonist 4-OHT. However, the binding energy of 4-OHT was higher than that of the agonist GSK4716, indicating that hydrophobic interactions are crucial for the binding of the inverse agonist. From principal component analysis, we observed that the AF-2 helix conformation at the C-terminal domain was similar to the initial structures during simulations, indicating that the AF-2 helix conformation is crucial with respect to the agonist or inverse agonist for further functional activity of ERRγ. In addition, we performed residue network analysis to understand intramolecular signal transduction within the protein. The betweenness centrality suggested that few of the amino acids are important for residue signal transduction in apo and ligand-bound forms. The results from this study may assist in designing better therapeutic compounds against ERRγ associated diseases.


Subject(s)
Drug Inverse Agonism , Molecular Dynamics Simulation , Ligands , Furylfuramide , Receptors, Estrogen/metabolism
14.
J Yeungnam Med Sci ; 40(3): 297-301, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36316957

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has been ongoing for more than 2 years. Many patients who recover from severe acute respiratory syndrome coronavirus 2 infection continue to have aftereffects such as dyspnea and fatigue, which may lead to functional decline. Therefore, the need for managing these symptoms using methods such as pulmonary rehabilitation (PR) has emerged. The purpose of this study was to report the effectiveness of PR in five patients with acute COVID-19. PR was performed in patients with persistent dyspnea and oxygen demand after COVID-19. All five patients were able to maintain an independent functional status before COVID-19. However, after acute COVID-19, they were unable to walk independently and needed assistance for activities of daily living due to dyspnea and fatigue. Therefore, they were referred to rehabilitation units, and PR was performed. The modified Medical Research Council dyspnea scale, maximal expiratory pressure (MEP), 6-minute walking test, forced vital capacity, and grip strength were assessed before and after PR, and the results were compared. After PR, the parameters improved, except for the MEP in one patient (patient 3) and the grip strength in another patient (patient 4). After PR, two out of five patients returned to work and the other three returned home. Therefore, we conclude that PR is necessary for patients with acute COVID-19 with activity limitations.

15.
Front Vet Sci ; 10: 1340126, 2023.
Article in English | MEDLINE | ID: mdl-38298458

ABSTRACT

Foot-and-mouth disease (FMD) is a highly infectious animal disease caused by foot-and-mouth disease virus (FMDV) and primarily infects cloven-hoofed animals such as cattle, sheep, goats, and pigs. It has become a significant health concern in global livestock industries because of diverse serotypes, high mutation rates, and contagious nature. There is no specific antiviral treatment available for FMD. Hence, based on the importance of 3C protease in FMDV viral replication and pathogenesis, we have employed a structure-based virtual screening method by targeting 3C protease with a natural compounds dataset (n = 69,040) from the InterBioScreen database. Virtual screening results identified five potential compounds, STOCK1N-62634, STOCK1N-96109, STOCK1N-94672, STOCK1N-89819, and STOCK1N-80570, with a binding affinity of -9.576 kcal/mol, -8.1 kcal/mol, -7.744 kcal/mol, -7.647 kcal/mol, and - 7.778 kcal/mol, respectively. The compounds were further validated through physiochemical properties and density functional theory (DFT). Subsequently, the comparative 300-ns MD simulation of all five complexes exhibited overall structural stability from various MD analyses such as root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), H-bonds, principal component analysis (PCA), and free energy landscape (FEL). Furthermore, MM-PBSA calculation suggests that all five compounds, particularly STOCK1N-62634, STOCK1N-96109, and STOCK1N-94672, can be considered as potential inhibitors because of their strong binding affinity toward 3C protease. Thus, we hope that these identified compounds can be studied extensively to develop natural therapeutics for the better management of FMD.

16.
Ann Clin Lab Sci ; 53(6): 959-963, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38182156

ABSTRACT

Coffin-Siris syndrome (CSS) is a rare congenital disorder characterized by coarse facial features, intellectual disability or developmental delay, and aplasia or hypoplasia of the tips of the fifth finger and/or toes. Mutations in genes affecting the switch/sucrose non-fermenting ATP-dependent chromatin remodeling complex are reported to cause CSS. Here, we describe three CSS patients. Two girls aged 3 and 2 years old presented with global developmental delay, poor growth, and a dysmorphic face. Whole-exome sequencing (WES) was performed and they were diagnosed with CSS due to heterozygous frameshift variants (c.3443_3444del, p.Lys1148ArgfsTer9 and c.2869_2890del, p.Pro957CysfsTer20) in ARID1B A 2-year-old girl presented with gross motor delay and dysmorphic face. She was diagnosed with CSS due to a novel heterozygous frameshift variant (c.4942_4943del: p.Gln1648GlyfsTer8) in ARID2.


Subject(s)
Abnormalities, Multiple , Female , Humans , Child, Preschool , Abnormalities, Multiple/genetics , Face , Facies , Frameshift Mutation/genetics , Transcription Factors/genetics
17.
J Anim Sci Technol ; 64(4): 752-769, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35969701

ABSTRACT

Wheat gluten is an increasingly common ingredient in poultry diets but its impact on the small intestine in chicken is not fully understood. This study aimed to identify effects of high-gluten diets on chicken small intestines and the variation of their associated transcriptional responses by age. A total of 120 broilers (Ross Strain) were used to perform two animal experiments consisting of two gluten inclusion levels (0% or 25%) by bird's age (1 week or 4 weeks). Transcriptomics and histochemical techniques were employed to study the effect of gluten on their duodenal mucosa using randomly selected 12 broilers (3 chicks per group). A reduction in feed intake and body weight gain was found in the broilers fed a high-gluten containing diet at both ages. Histochemical photomicrographs showed a reduced villus height to crypt depth ratio in the duodenum of gluten-fed broilers at 1 week. We found mainly a significant effect on the gene expression of duodenal mucosa in gluten-fed broilers at 1 week (289 differentially expressed genes [DEGs]). Pathway analyses revealed that the significant DEGs were mainly involved in ribosome, oxidative phosphorylation, and peroxisome proliferator-activated receptor (PPAR) signaling pathways. These pathways are involved in ribosome protein biogenesis, oxidative phosphorylation and fatty acid metabolism, respectively. Our results suggest a pattern of differential gene expression in these pathways that can be linked to chronic inflammation, suppression of cell proliferation, cell cycle arrest and apoptosis. And via such a mode of action, high-gluten inclusion levels in poultry diets could lead to the observed retardation of villi development in the duodenal mucosa of young broiler chicken.

18.
Viruses ; 14(3)2022 02 26.
Article in English | MEDLINE | ID: mdl-35336890

ABSTRACT

Bacillus subtilis is an important bacterial species due to its various industrial, medicinal, and agricultural applications. Prophages are known to play vital roles in host properties. Nevertheless, studies on the prophages and temperate phages of B. subtilis are relatively limited. In the present study, an in silico analysis was carried out in sequenced B. subtilis strains to investigate their prevalence, diversity, insertion sites, and potential roles. In addition, the potential for UV induction and prevalence was investigated. The in silico prophage analysis of 164 genomes of B. subtilis strains revealed that 75.00% of them contained intact prophages that exist as integrated and/or plasmid forms. Comparative genomics revealed the rich diversity of the prophages distributed in 13 main clusters and four distinct singletons. The analysis of the putative prophage proteins indicated the involvement of prophages in encoding the proteins linked to the immunity, bacteriocin production, sporulation, arsenate, and arsenite resistance of the host, enhancing its adaptability to diverse environments. An induction study in 91 B. subtilis collections demonstrated that UV-light treatment was instrumental in producing infective phages in 18.68% of them, showing a wide range of host specificity. The high prevalence and inducibility potential of the prophages observed in this study implies that prophages may play vital roles in the B. subtilis host.


Subject(s)
Bacteriophages , Prophages , Bacillus subtilis/genetics , Bacteriophages/genetics , Genome, Viral , Plasmids , Prevalence , Prophages/genetics
19.
Molecules ; 27(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35208942

ABSTRACT

Soybean sprouts, a nutritional food product, can contribute to food security because they can be grown within a week and do not require sophisticated technology. The yield and quality of soybean sprouts are influenced by various factors, including seed priming and growing conditions. The objective of this study was to investigate the effects of seed soaking in different concentrations of illite, a clay mineral, on the yield and quality of soybean sprouts. Soybean seeds soaked in five concentrations (0.5%, 1%, 3%, 5%, and 10%, w/v) of illite or tap water for 8 h were named IP-0.5, IP-1, IP3, IP-5, IP-10, and control, respectively. The highest sprout yield was found in IP-3, followed by IP-1, and IP-5, which had 11.1%, 8.8%, and 7.4% increments, respectively, compared to the control. The content of vitamin C, mineral element, isoflavone, total polyphenol, and total flavonoid was higher in many of the illite-treated soybean sprouts than in the control. The overall results indicated that pre-soaking soybean seeds in lower concentrations (0.5-3%, w/v) of illite could be helpful to enhance the yield and nutritional value of soybean sprouts in an easy and inexpensive way.


Subject(s)
Food Analysis , Glycine max , Minerals/pharmacology , Nutritive Value , Seedlings/chemistry , Seeds/chemistry , Humans , Seedlings/growth & development , Seeds/metabolism
20.
Anim Biosci ; 35(5): 659-669, 2022 May.
Article in English | MEDLINE | ID: mdl-35073661

ABSTRACT

OBJECTIVE: Thoroughbred horses have been bred exclusively for racing in England for a long time. Additionally, because horse racing is a global sport, a healthy leisure activity for ordinary citizens, and a high-value business, systematic racehorse breeding at the population level is a requirement for continuous industrial development. Therefore, we established genomic evaluation system (using prize money as horse racing traits) to produce spirited, agile, and strong racing horse population. METHODS: We used phenotypic data from 25,061 Thoroughbred horses (all registered individuals in Korea) that competed in races between 1994 and 2019 at the Korea Racing Authority and constructed pedigree structures. We quantified the improvement in racehorse breeding output by year in Korea, and this aided in the establishment of a high-level horse-fill industry. RESULTS: We found that pedigree-based best linear unbiased prediction method improved the racing performance of the Thoroughbred population with high accuracy, making it possible to construct an excellent Thoroughbred racehorse population in Korea. CONCLUSION: This study could be used to develop an efficient breeding program at the population level for Korean Thoroughbred racehorse populations as well as others.

SELECTION OF CITATIONS
SEARCH DETAIL
...