Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Metab J ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772544

ABSTRACT

Background: Islet transplantation holds promise for treating selected type 1 diabetes mellitus patients, yet the scarcity of human donor organs impedes widespread adoption. Porcine islets, deemed a viable alternative, recently demonstrated successful longterm survival without zoonotic risks in a clinically relevant pig-to-non-human primate islet transplantation model. This success prompted the development of a clinical trial protocol for porcine islet xenotransplantation in humans. Methods: A single-center, open-label clinical trial initiated by the sponsor will assess the safety and efficacy of porcine islet transplantation for diabetes patients at Gachon Hospital. The protocol received approval from the Gachon Hospital Institutional Review Board (IRB) and the Korean Ministry of Food and Drug Safety (MFDS) under the Investigational New Drug (IND) process. Two diabetic patients, experiencing inadequate glycemic control despite intensive insulin treatment and frequent hypoglycemic unawareness, will be enrolled. Participants and their family members will engage in deliberation before xenotransplantation during the screening period. Each patient will receive islets isolated from designated pathogen-free pigs. Immunosuppressants and systemic infection prophylaxis will follow the program schedule. The primary endpoint is to confirm the safety of porcine islets in patients, and the secondary endpoint is to assess whether porcine islets can reduce insulin dose and the frequency of hypoglycemic unawareness. Conclusion: A clinical trial protocol adhering to global consensus guidelines for porcine islet xenotransplantation is presented, facilitating streamlined implementation of comparable human trials worldwide.

2.
Biochem Biophys Rep ; 38: 101658, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38362049

ABSTRACT

Islet transplantation is the most effective treatment strategy for type 1 diabetes. Long-term storage at ultralow temperatures can be used to prepare sufficient islets of good quality for transplantation. For freezing islets, dimethyl sulfoxide (DMSO) is a commonly used penetrating cryoprotective agent (CPA). However, the toxicity of DMSO is a major obstacle to cell cryopreservation. Hydroxyethyl starch (HES) has been proposed as an alternative CPA. To investigate the effects of two types of nonpermeating CPA, we compared 4 % HES 130 and HES 200 to 10 % DMSO in terms of mouse islet yield, viability, and glucose-stimulated insulin secretion (GSIS). After one day of culture, islets were cryopreserved in each solution. After three days of cryopreservation, islet recovery was significantly higher in the HES 130 and HES 200 groups than in the DMSO group. Islet viability in the HES 200 group was also significantly higher than that in the DMSO group on Day 1 and Day 3. Stimulation indices determined by GSIS were higher in the HES 130 and 200 groups than in the DMSO group on Day 3. After three days of cryopreservation, HES 130 and HES 200 both reduced the expression of apoptosis- and necrosis-associated proteins and promoted the survival of islets. In conclusion, the use of HES as a CPA improved the survival and insulin secretion of cryopreserved islets compared with the use of a conventional CPA.

3.
Transplant Proc ; 53(10): 2853-2865, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34772491

ABSTRACT

BACKGROUND: Ischemia/reperfusion injury (IRI) is inevitable in kidney transplantation (KT) and may lead to impaired tubular epithelial cell function and reduce graft function and survival. Renal IRI is a complex cellular and molecular event; therefore, investigating the genetic or molecular pathways associated with the early phase of KT would improve our understanding of IRI in KT. MicroRNAs (miRNAs) play a critical role in various pathologic events associated with IRI. METHODS: We compared the expression profile of miRNAs extracted from 2 blood plasma samples, 1 from periphery and the other form gonadal veins immediately after reperfusion, in a total 5 cases of KT. RESULTS: We observed that the total RNA yield was higher in postreperfusion plasma and that a subset of miRNAs was upregulated (miR-let-7a-3p, miR-143-3p, and miR-214-3p) or downregulated (let-7d-3p, let-7d-3p, miR-1246, miR-1260b, miR-1290, and miR-130b-3p) in postreperfusion plasma. Gene ontology analyses revealed that these subsets target different biological functions. Twenty-four predicted genes were commonly targeted by the upregulated miRNAs, and gene ontology enrichment and pathway analyses revealed that these were associated with various cellular activities such as signal transduction or with components such as exosomes and membranous organelles. CONCLUSION: We present 2 subsets of miRNAs that were differentially upregulated or downregulated in postreperfusion plasma. Our findings may enhance our understanding of miRNA-mediated early molecular events related to IRI in KT.


Subject(s)
Cell-Free Nucleic Acids , Kidney Transplantation , MicroRNAs , Gene Expression Profiling , Kidney Transplantation/adverse effects , MicroRNAs/genetics , Plasma
4.
Sci Rep ; 11(1): 8617, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33883656

ABSTRACT

Many groups are working to improve the results of clinical allogeneic islet transplantation in a primate model. However, few studies have focused on the optimal islet dose for achieving normal glycemia without exogenous insulin after transplantation in primate models or on the relationship between rejection and islet amyloid polypeptide (IAPP) expression. We evaluated the dose (10,000, 20,000, and > 25,000 islet equivalents (IEQ)/kg) needed to achieve normal glycemia without exogenous insulin after transplantation using eleven cynomolgus monkeys, and we analyzed the characteristics exhibited in the islets after transplantation. 10,000 IEQ/kg (N = 2) failed to control blood glucose level, despite injection with the highest dose of exogenous insulin, and 20,000 IEQ/kg group (N = 5) achieved unstable control, with a high insulin requirement. However, 25,000 IEQ/kg (N = 4) achieved normal glycemia without exogenous insulin and maintained it for more than 60 days. Immunohistochemistry results from staining islets found in liver biopsies indicated that as the number of transplanted islets decreased, the amount of IAPP accumulation within the islets increased, which accelerated CD3+ T cell infiltration. In conclusion, the optimal transplantation dose for achieving a normal glycemia without exogenous insulin in our cynomolgus monkey model was > 25,000 IEQ/kg, and the accumulation of IAPP early after transplantation, which depends on the transplanted islet dose, can be considered one factor in rejection.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Insulin/immunology , Islets of Langerhans/immunology , Macaca fascicularis/immunology , Animals , CD3 Complex/immunology , Glucose Tolerance Test/methods , Immunohistochemistry/methods , Islet Amyloid Polypeptide/immunology , Islets of Langerhans Transplantation/methods , Transplantation, Heterologous/methods
5.
Sci Rep ; 10(1): 793, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964980

ABSTRACT

The most obvious method to observe transplanted islets in the liver is direct biopsy, but the distribution and location of the best biopsy site in the recipient's liver are poorly understood. Islets transplanted into the whole liver of five diabetic cynomolgus monkeys that underwent insulin-independent survival for an extended period of time after allo-islet transplantation were analyzed for characteristics and distribution tendency. The liver was divided into segments (S1-S8), and immunohistochemistry analysis was performed to estimate the diameter, beta cell area, and islet location. Islets were more distributed in S2 depending on tissue size; however, the number of islets per tissue size was high in S1 and S8. Statistical analysis revealed that the characteristics of islets in S1 and S8 were relatively similar to other segments despite various transplanted islet dosages and survival times. In conclusion, S1, which exhibited high islet density and reflected the overall characteristics of transplanted islets, can be considered to be a reasonable candidate for a liver biopsy site in this monkey model. The findings obtained from the five monkey livers with similar anatomical features to human liver can be used as a reference for monitoring transplanted islets after clinical islet transplantation.


Subject(s)
Islets of Langerhans Transplantation/methods , Islets of Langerhans , Liver/cytology , Allografts , Animals , Biopsy , Diabetes Mellitus, Experimental/pathology , Female , Image Processing, Computer-Assisted , Immunohistochemistry , Insulin/metabolism , Macaca fascicularis , Male
6.
Biochem Biophys Res Commun ; 504(1): 302-308, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30190122

ABSTRACT

Mesenchymal stromal cells (MSCs) isolated from numerous tissues including human fetal tissue are currently used in cell therapy and regenerative medicine. Among fetal tissues, the umbilical cord (UC) is one of the sources for both MSCs and endothelial cells (ECs). To establish ectopic vascularized bone tissue formation, UC-derived MSCs and ECs were isolated. UC-MSCs expressing human BMP-2 (hBMP-2-MSCs) were generated using an adenoviral system to promote bone formation. These cells were then transplanted with Matrigel into the subcutaneous tissue of an immune deficient NSG mouse, and bone tissue was analyzed after several weeks. The osteogenic differentiation ability of MSCs was elevated by transduction of the hBMP-2 expressing adenoviral system, and vascularization of bone tissue was enhanced by human umbilical vein endothelial cells (HUVEC). In this study, our results provide evidence that MSCs and HUVECs from human umbilical cord are suitable cells to investigate bone tissue engineering. The results also suggest that the co-transplantation of hBMP2-MSCs and HUVECs may be a simple and efficient strategy for improving tissue generation and angiogenesis in bone tissue engineering using stem cells.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis , Tissue Engineering/methods , Umbilical Cord/cytology , Animals , Bone Regeneration , Cell Differentiation , Cell Transplantation , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mice , Mice, Inbred NOD , Neovascularization, Physiologic
7.
Bioconjug Chem ; 29(9): 2945-2953, 2018 09 19.
Article in English | MEDLINE | ID: mdl-29985588

ABSTRACT

The microenvironment of pancreatic islets gets disrupted during enzyme digestion and causes islets to remain in a vulnerable state, leading to poor outcome in the initial days of transplantation. To avoid immune invasion while allowing the reconstruction of the microenvironment of the transplanted site, we propose immunoisolation polymers, which can nanoencapsulate islets quickly without cytotoxicity. Here, nonhuman primate (NHP) islets were nanoencapsulated with hyperbranched polyethylene glycol (hb-PEG) and heparin by layer-by-layer technology and transplanted into the kidney subcapsular space of diabetic C57BL/6 mice. An immunosuppressive drug protocol was applied to increase the survival time until the animals were sacrificed. The recipients of NHP islets exhibited high nonfasting blood glucose level (BGL) for 2-3 weeks, which was normalized afterward. Immunohistochemical (IHC) analysis revealed an immature vascular basement membrane and cell surface integrins directly associated with poor initial insulin production. The transplanted grafts regained their own microenvironment within a month without any outside stimuli. No lymphocyte infiltration was observed in the grafts at any time. Humoral and cell-mediated immune responses were prominently diminished by the hb-PEG/Heparin nanoencapsulated islets. Immunoisolation accompanied by an immunosuppressive drug protocol protects islets by helping them avoid immunogenesis while at the same time allowing them to reconstruct their microenvironment.


Subject(s)
Blood Glucose/metabolism , Cellular Microenvironment , Heparin/chemistry , Islets of Langerhans Transplantation/methods , Nanotechnology , Polyethylene Glycols/chemistry , Animals , Antibody Formation , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/therapy , Immunity, Cellular , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL
8.
Biomaterials ; 171: 164-177, 2018 07.
Article in English | MEDLINE | ID: mdl-29698867

ABSTRACT

Intraportal pancreatic islet transplantation incurs huge cell losses during its early stages due to instant blood-mediated inflammatory reactions (IBMIRs), which may also drive regulation of the adaptive immune system. Therefore, a method that evades IBMIR will improve clinical islet transplantation. We used a layer-by-layer approach to shield non-human primate (NHP) islets with polyethylene glycol (nano-shielded islets, NSIs) and polyethylene glycol plus heparin (heparin nano-shielded islets; HNSIs). Islets ranging from 10,000 to 20,000 IEQ/kg body weight were transplanted into 19 cynomolgus monkeys (n = 4, control; n = 5, NSI; and n = 10, HNSI). The mean C-peptide positive graft survival times were 68.5, 64 and 108 days for the control, NSI and HNSI groups, respectively (P = 0.012). HNSI also reduced the factors responsible for IBMIR in vitro. Based on these data, HNSIs in conjunction with clinically established immunosuppressive drug regimens will result in superior outcomes compared to those achieved with the current protocol for clinical islet transplantation.


Subject(s)
Heparin/chemistry , Islets of Langerhans/physiology , Nanoparticles/chemistry , Polymers/chemistry , Allografts/physiology , Animals , Graft Survival , Humans , Liver/pathology , Lymphocyte Subsets/metabolism , Macaca fascicularis , Polyethylene Glycols/chemistry
9.
Xenotransplantation ; 25(1)2018 01.
Article in English | MEDLINE | ID: mdl-29135052

ABSTRACT

BACKGROUND: Porcine islet xenotransplantation is considered an attractive alternative treatment for type 1 diabetes mellitus. However, it is largely limited because of initial rejection due to Instant Blood-Mediated Inflammatory Reaction (IBMIR), oxidative stress, and inflammatory responses. Recently, soluble tumor necrosis factor-ɑ receptor type I (sTNF-αR) and heme oxygenase (HO)-1 genes (HO-1/sTNF-αR) have been shown to improve the viability and functionality of porcine islets after transplantation. METHODS: In this study, genetically modified mesenchymal stem cells (MSCs) expressing the HO-1/sTNF-αR genes (HO-1/sTNF-αR-MSC) were developed using an adenoviral system, and porcine islet viability and function were confirmed by in vitro tests such as GSIS, AO/PI, and the ADP/ATP ratio after coculturing with HO-1/sTNF-αR-MSCs. Subsequently, isolated porcine islets were transplanted underneath the kidney capsule of diabetic humanized mice without MSCs, with MSCs or with HO-1/sTNF-αR-MSCs. RESULTS: According to the results, the HO-1/sTNF-αR-MSC-treated group exhibited improved survival of porcine islets and could reverse hyperglycemia more than porcine islets not treated with MSCs or islets cotransplanted with MSCs. Moreover, the HO-1/sTNF-αR-MSC group maintained its morphological characteristics and the insulin secretion pattern of transplanted porcine islets similar to endogenous islets in immunocompetent humanized mice. CONCLUSIONS: Our results suggest that HO-1/sTNF-αR-MSCs are efficient tools for porcine islet xenotransplantation, and this study may provide basic information for pre-clinical animal models and future clinical trials of porcine islet xenotransplantation.


Subject(s)
Graft Survival , Heme Oxygenase-1/genetics , Heterografts/immunology , Membrane Proteins/genetics , Mesenchymal Stem Cells/cytology , Receptors, Tumor Necrosis Factor, Type I/metabolism , Animals , Coculture Techniques , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/therapy , Graft Survival/immunology , Humans , Immunoglobulin Fc Fragments/immunology , Islets of Langerhans/immunology , Islets of Langerhans Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Mice, Transgenic , Transplantation, Heterologous/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...