Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Front Mol Neurosci ; 17: 1415207, 2024.
Article in English | MEDLINE | ID: mdl-39092203

ABSTRACT

Recent studies capitalizing on the newly complete nanometer-resolution Drosophila larval connectome have made significant advances in identifying the structural basis of motor patterning. However, the molecular mechanisms utilized by neurons to wire these circuits remain poorly understood. In this study we explore how cell-specific expression of two Dscam2 isoforms, which mediate isoform-specific homophilic binding, contributes to motor patterning and output of Drosophila larvae. Ablating Dscam2 isoform diversity resulted in impaired locomotion. Electrophysiological assessment at the neuromuscular junction during fictive locomotion indicated that this behavioral defect was largely caused by weaker bouts of motor neuron activity. Morphological analyses of single motor neurons using MultiColour FlpOut revealed severe errors in dendrite arborization and assessment of cholinergic and GABAergic projections to the motor domain revealed altered morphology of interneuron processes. Loss of Dscam2 did not affect locomotor output, motor neuron activation or dendrite targeting. Our findings thus suggest that locomotor circuit phenotypes arise specifically from inappropriate Dscam2 interactions between premotor interneurons and motor neurons when they express the same isoform. Indeed, we report here that first-order premotor interneurons express Dscam2A. Since motor neurons express Dscam2B, our results provide evidence that Dscam2 isoform expression alternates between synaptic partners in the nerve cord. Our study demonstrates the importance of cell-specific alternative splicing in establishing the circuitry that underlies neuromotor patterning without inducing unwanted intercellular interactions.

2.
bioRxiv ; 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36993604

ABSTRACT

Acetylated microtubules play key roles in the regulation of mitochondria dynamics. It has however remained unknown if the machinery controlling mitochondria dynamics functionally interacts with the alpha-tubulin acetylation cycle. Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion, transport and tethering with the endoplasmic reticulum. The role of MFN2 in regulating mitochondrial transport has however remained elusive. Here we show that mitochondrial contacts with microtubules are sites of alpha-tubulin acetylation, which occurs through the MFN2-mediated recruitment of alpha-tubulin acetyltransferase 1 (ATAT1). We discover that this activity is critical for MFN2-dependent regulation of mitochondria transport, and that axonal degeneration caused by CMT2A MFN2 associated mutations, R94W and T105M, may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in regulating acetylated alpha-tubulin and suggest that disruption of the tubulin acetylation cycle play a pathogenic role in the onset of MFN2-dependent CMT2A.

3.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909552

ABSTRACT

Axon and dendrite placement and connectivity is guided by a wide range of secreted and surface molecules in the developing nervous system. Nevertheless, the extraordinary complexity of connections in the brain requires that this repertoire be further diversified to precisely and uniquely regulate cell-cell interactions. One important mechanism for molecular diversification is alternative splicing. Drosophila Down syndrome cell adhesion molecule (Dscam2) undergoes cell type-specific alternative splicing to produce two isoform-specific homophilic binding proteins. Regulated alternative splicing of Dscam2 is important for dendrite and axon patterning, but how this translates to circuit wiring and animal behavior is not well understood. Here, we examined the role of cell-type specific expression of Dscam2 isoforms in regulating synaptic partner selection in the larval somatosensory system. We found that synaptic partners in the nociceptive circuit express different Dscam2 isoforms. Forcing synaptic partners to express a common isoform resulted in nociceptive axon patterning defects and attenuated nocifensive behaviors, indicating that a role for Dscam2 alternative splicing is to ensure that synaptic partners do not express matching isoforms. These results point to a model in which regulated alternative splicing of Dscam2 across populations of neurons restricts connectivity to specific partners and prevents inappropriate synaptic connections.

4.
Exp Neurol ; 359: 114258, 2023 01.
Article in English | MEDLINE | ID: mdl-36279934

ABSTRACT

Paclitaxel is a common chemotherapeutic agent widely used to treat solid cancer. However, it frequently causes peripheral sensory neuropathy, resulting in sensory abnormalities and pain in patients receiving treatment for cancer. As one of the most widely used chemotherapeutics, many preclinical studies on paclitaxel-induced peripheral neuropathy (PIPN) have been performed. Yet, there remain no effective options for treatment or prevention. Due to paclitaxel's ability to bind to and stabilize microtubules, a change in microtubule dynamics and subsequent disruptions in axonal transport has been predicted as a major underlying cause of paclitaxel-induced toxicity. However, the systemic understanding of PIPN mechanisms is largely incomplete, and various phenotypes have not been directly attributed to microtubule-related effects. This review aims to provide an overview of the literature involving paclitaxel-induced alteration in microtubule dynamics, axonal transport, and endocytic changes. It also aims to provide insights into how the microtubule-mediated hypothesis may relate to various phenotypes reported in PIPN studies.


Subject(s)
Paclitaxel , Peripheral Nervous System Diseases , Humans , Paclitaxel/toxicity , Axonal Transport , Peripheral Nervous System Diseases/chemically induced , Microtubules , Axons
5.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36547519

ABSTRACT

Disruptions in membrane trafficking are associated with neurodevelopmental disorders, but underlying pathological mechanisms remain largely unknown. In this issue, O'Brien et al. (2023. J. Cell Biol.https://doi.org/10.1083/jcb.202112108) show how GARP regulates sterol transfer critical for remodeling of dendrites in flies.


Subject(s)
Dendrites , Membrane Proteins , Neurodevelopmental Disorders , Sterols , Dendrites/pathology , Membranes , Neurodevelopmental Disorders/physiopathology , Sterols/metabolism , Membrane Proteins/metabolism
6.
Front Pain Res (Lausanne) ; 3: 912977, 2022.
Article in English | MEDLINE | ID: mdl-35875478

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a highly prevalent and complex condition arising from chemotherapy cancer treatments. Currently, there are no treatment or prevention options in the clinic. CIPN accompanies pain-related sensory functions starting from the hands and feet. Studies focusing on neurons in vitro and in vivo models significantly advanced our understanding of CIPN pathological mechanisms. However, given the direct toxicity shown in both neurons and non-neuronal cells, effective in vivo or in vitro models that allow the investigation of neurons in their local environment are required. No single model can provide a complete solution for the required investigation, therefore, utilizing a multi-model approach would allow complementary advantages of different models and robustly validate findings before further translation. This review aims first to summarize approaches and insights from CIPN in vivo models utilizing small model organisms. We will focus on Drosophila melanogaster CIPN models that are genetically amenable and accessible to study neuronal interactions with the local environment in vivo. Second, we will discuss how these findings could be tested in physiologically relevant vertebrate models. We will focus on in vitro approaches using human cells and summarize the current understanding of engineering approaches that may allow the investigation of pathological changes in neurons and the skin environment.

7.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876743

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractable Drosophila model and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment of Drosophila larvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin ß-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.


Subject(s)
Integrins/metabolism , Nociceptors/metabolism , Peripheral Nervous System Diseases/metabolism , Animals , Antineoplastic Agents/toxicity , Cells, Cultured , Drosophila melanogaster , Endosomes/metabolism , Female , Ganglia, Spinal/cytology , Integrins/genetics , Male , Mice , Mice, Inbred C57BL , Nociceptors/physiology , Paclitaxel/toxicity , Peripheral Nervous System Diseases/etiology
8.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468672

ABSTRACT

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Subject(s)
Bortezomib/adverse effects , Neoplasms/drug therapy , Peripheral Nervous System Diseases/genetics , Tubulin/genetics , Animals , Antineoplastic Agents/adverse effects , Axons/drug effects , Axons/pathology , Disease Models, Animal , Drosophila melanogaster/genetics , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Larva/drug effects , Larva/genetics , Microtubules/drug effects , Microtubules/genetics , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/genetics , Neoplasms/genetics , Neoplasms/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/pathology , Zebrafish/genetics
9.
J Cell Biol ; 219(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32259198

ABSTRACT

Dscam2 is a cell surface protein required for neuronal development in Drosophila; it can promote neural wiring through homophilic recognition that leads to either adhesion or repulsion between neurites. Here, we report that Dscam2 also plays a post-developmental role in suppressing synaptic strength. This function is dependent on one of two distinct extracellular isoforms of the protein and is autonomous to motor neurons. We link the PI3K enhancer, Centaurin gamma 1A, to the Dscam2-dependent regulation of synaptic strength and show that changes in phosphoinositide levels correlate with changes in endosomal compartments that have previously been associated with synaptic strength. Using transmission electron microscopy, we find an increase in synaptic vesicles at Dscam2 mutant active zones, providing a rationale for the increase in synaptic strength. Our study provides the first evidence that Dscam2 can regulate synaptic physiology and highlights how diverse roles of alternative protein isoforms can contribute to unique aspects of brain development and function.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Endosomes/metabolism , GTPase-Activating Proteins/metabolism , Larva/growth & development , Motor Neurons/metabolism , Neural Cell Adhesion Molecules/metabolism , Neurogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Animals , Animals, Genetically Modified , Drosophila/growth & development , Drosophila Proteins/genetics , Endosomes/genetics , Endosomes/ultrastructure , Immunohistochemistry , Larva/genetics , Larva/physiology , Larva/ultrastructure , Microscopy, Electron, Transmission , Motor Neurons/physiology , Mutation , Neural Cell Adhesion Molecules/genetics , Neuromuscular Junction/cytology , Neuromuscular Junction/genetics , Peripheral Nervous System/metabolism , Phosphatidylinositols/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protein Isoforms/metabolism , Synaptic Transmission/genetics , Synaptic Transmission/physiology
10.
Elife ; 72018 03 12.
Article in English | MEDLINE | ID: mdl-29528286

ABSTRACT

Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.


Subject(s)
Behavior, Animal/physiology , Drosophila melanogaster/physiology , Interneurons/physiology , Nociceptors/physiology , Animals , Drosophila melanogaster/genetics , Efferent Pathways/physiology , Escape Reaction/physiology , Larva/physiology
11.
Genetics ; 208(2): 717-728, 2018 02.
Article in English | MEDLINE | ID: mdl-29208630

ABSTRACT

How the brain makes trillions of synaptic connections using a genome of only 20,000 genes is a major question in modern neuroscience. Alternative splicing is one mechanism that can increase the number of proteins produced by each gene, but its role in regulating synapse formation is poorly understood. In Drosophila, photoreceptors form a synapse with multiple postsynaptic elements including lamina neurons L1 and L2. L1 and L2 express distinct isoforms of the homophilic repulsive protein Dscam2, and since these isoforms cannot bind to each other, cell-specific expression has been proposed to be necessary for preventing repulsive interactions that could disrupt the synapse. Here, we show that the number of synapses are reduced in flies that express only one isoform, and L1 and L2 dendritic morphology is perturbed. We propose that these defects result from inappropriate interactions between L1 and L2 dendrites. We conclude that regulated Dscam2 alternative splicing is necessary for the proper assembly of photoreceptor synapses.


Subject(s)
Alternative Splicing , Drosophila Proteins/genetics , Neural Cell Adhesion Molecules/genetics , Photoreceptor Cells, Invertebrate/metabolism , Synapses/metabolism , Animals , Animals, Genetically Modified , Dendrites/metabolism , Mutation , Photoreceptor Cells, Invertebrate/ultrastructure , Protein Isoforms/genetics
12.
Neuron ; 89(3): 480-93, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26844831

ABSTRACT

Cell recognition molecules are key regulators of neural circuit assembly. The Dscam family of recognition molecules in Drosophila has been shown to regulate interactions between neurons through homophilic repulsion. This is exemplified by Dscam1 and Dscam2, which together repel dendrites of lamina neurons, L1 and L2, in the visual system. By contrast, here we show that Dscam2 directs dendritic targeting of another lamina neuron, L4, through homophilic adhesion. Through live imaging and genetic mosaics to dissect interactions between specific cells, we show that Dscam2 is required in L4 and its target cells for correct dendritic targeting. In a genetic screen, we identified Dscam4 as another regulator of L4 targeting which acts with Dscam2 in the same pathway to regulate this process. This ensures tiling of the lamina neuropil through heterotypic interactions. Thus, different combinations of Dscam proteins act through distinct mechanisms in closely related neurons to pattern neural circuits.


Subject(s)
Dendrites/physiology , Drosophila Proteins/physiology , Gene Expression Regulation, Developmental/physiology , Neural Cell Adhesion Molecules/physiology , Alleles , Animals , Cell Adhesion/genetics , Cell Adhesion/physiology , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Drosophila melanogaster , Mosaicism , Neural Cell Adhesion Molecules/biosynthesis , Neural Cell Adhesion Molecules/genetics
13.
Neurogenesis (Austin) ; 2(1): e1122699, 2015.
Article in English | MEDLINE | ID: mdl-27606331

ABSTRACT

Alternative splicing (AS) allows a single gene to generate multiple protein isoforms. It has been hypothesized that AS plays a role in brain wiring by increasing the number of cell recognition molecules necessary for forming connections between neurons. Many studies have characterized isoform expression patterns of various genes in the brain, but very few have addressed whether specific isoforms play a functional role in neuronal wiring. In our recent work, we reported the cell-type-specific AS of the cell recognition molecule Dscam2. Exclusive expression of Dscam2 isoforms allows tightly associated neurons to signal repulsion selectively within the same cell-types, without interfering with one another. We show that preventing cell-specific isoform expression in 2 closely associated neurons disrupts their axon terminal morphology. We propose that the requirement for isoform specificity extends to synapses and discuss experiments that can test this directly. Factors that regulate Dscam2 cell-type-specific AS likely regulate the splicing of many genes involved in neurodevelopment. These regulators of alternative splicing may act broadly to control many genes involved in the development of specific neuron types. Identifying these factors is a key step in understanding how AS contributes to the brain connectome.

SELECTION OF CITATIONS
SEARCH DETAIL