Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 10: e2015, 2024.
Article in English | MEDLINE | ID: mdl-38686007

ABSTRACT

One of the limitations of currently-used metabolic syndrome (MetS) risk calculations is that they often depend on sample characteristics. To address this, we introduced a novel sample-independent risk quantification method called 'triangular areal similarity' (TAS) that employs three-axis radar charts constructed from five MetS factors in order to assess the similarity between standard diagnostic thresholds and individual patient measurements. The method was evaluated using large datasets of Korean (n = 72,332) and American (n = 11,286) demographics further segmented by sex, age, and race. The risk score exhibited a strong positive correlation with the number of abnormal factors and was closely aligned with the current diagnostic paradigm. The proposed score demonstrated high diagnostic accuracy and robustness, surpassing previously reported risk scores. This method demonstrated superior performance and stability when tested on cross-national datasets. This novel sample-independent approach has the potential to enhance the precision of MetS risk prediction.

2.
PLoS One ; 18(6): e0286635, 2023.
Article in English | MEDLINE | ID: mdl-37267302

ABSTRACT

Metabolic syndrome (MetS) is a chronic disease caused by obesity, high blood pressure, high blood sugar, and dyslipidemia and may lead to cardiovascular disease or type 2 diabetes. Therefore, the detection and prevention of MetS at an early stage are imperative. Individuals can detect MetS early and manage it effectively if they can easily monitor their health status in their daily lives. In this study, a predictive model for MetS was developed utilizing solely noninvasive information, thereby facilitating its practical application in real-world scenarios. The model's construction deliberately excluded three features requiring blood testing, specifically those for triglycerides, blood sugar, and HDL cholesterol. We used a large-scale Korean health examination dataset (n = 70, 370; the prevalence of MetS = 13.6%) to develop the predictive model. To obtain informative features, we developed three novel synthetic features from four basic information: waist circumference, systolic and diastolic blood pressure, and gender. We tested several classification algorithms and confirmed that the decision tree model is the most appropriate for the practical prediction of MetS. The proposed model achieved good performance, with an AUC of 0.889, a recall of 0.855, and a specificity of 0.773. It uses only four base features, which results in simplicity and easy interpretability of the model. In addition, we performed calibrations on the prediction probability and calibrated the model. Therefore, the proposed model can provide MetS diagnosis and risk prediction results. We also proposed a MetS risk map such that individuals could easily determine whether they had metabolic syndrome.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Metabolic Syndrome/prevention & control , Blood Glucose , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Obesity , Waist Circumference/physiology , Triglycerides , Cholesterol, HDL , Prevalence , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...