Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 28(11): 4642-4654, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730842

ABSTRACT

Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.


Subject(s)
Hypothalamic Area, Lateral , Ventral Tegmental Area , Animals , Mice , Dopamine/metabolism , Dopaminergic Neurons/metabolism , gamma-Aminobutyric Acid/metabolism , Hypothalamic Area, Lateral/metabolism , Nucleus Accumbens/metabolism , Ventral Tegmental Area/metabolism
2.
Elife ; 112022 11 01.
Article in English | MEDLINE | ID: mdl-36317872

ABSTRACT

Social deficit is a major feature of neuropsychiatric disorders, including autism spectrum disorders, schizophrenia, and attention-deficit/hyperactivity disorder, but its neural mechanisms remain unclear. Here, we examined neuronal discharge characteristics in the medial prefrontal cortex (mPFC) of IRSp53/Baiap2-mutant mice, which show social deficits, during social approach. We found a decrease in the proportion of IRSp53-mutant excitatory mPFC neurons encoding social information, but not that encoding non-social information. In addition, the firing activity of IRSp53-mutant neurons was less differential between social and non-social targets. IRSp53-mutant excitatory mPFC neurons displayed an increase in baseline neuronal firing, but decreases in the variability and dynamic range of firing as well as burst firing during social and non-social target approaches compared to wild-type controls. Treatment of memantine, an NMDA receptor antagonist that rescues social deficit in IRSp53-mutant mice, alleviates the reduced burst firing of IRSp53-mutant pyramidal mPFC neurons. These results suggest that suppressed neuronal activity dynamics and burst firing may underlie impaired cortical encoding of social information and social behaviors in IRSp53-mutant mice.


Subject(s)
Neurons , Schizophrenia , Animals , Mice , Neurons/physiology , Pyramidal Cells/metabolism , Prefrontal Cortex/physiology , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Biomedicines ; 10(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35203489

ABSTRACT

Hepatitis B virus (HBV) is known to cause severe liver diseases such as acute or chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Chronic hepatitis B (CHB) infection is a major health problem with nearly 300 million individuals infected worldwide. Currently, nucleos(t)ide analogs (NAs) and interferon alpha are clinically approved treatments for HBV infection. NAs are potent antiviral agents that bind to HBV polymerase and block viral reverse transcription and replication. Besifovir dipivoxil maleate (BSV) is a newly developed NA against HBV in the form of acyclic nucleotide phosphonate that is available for oral administration similar to adefovir and tenofovir. Until now, resistance to BSV treatment has not been reported. In this study, we found a CHB patient who showed viral breakthrough after long-term treatment with BSV. The isolated HBV DNA from patient's serum were cloned into the replication-competent HBV 1.2 mer and the sequence of reverse transcriptase (RT) domain of HBV polymerase were analyzed. We also examined the drug susceptibility of generated clones in vitro. Several mutations were identified in HBV RT domain. A particular mutant harboring ten RT mutations showed resistance to BSV treatment in vitro. The ten mutations include rtV23I (I), rtH55R (R), rtY124H (H), rtD134E (E), rtN139K (K), rtL180M (M), rtM204V (V), rtQ267L (L), rtL269I (I) and rtL336M (M). To further identify the responsible mutations for BSV resistance, we performed in vitro drug susceptibility assay on several artificial clones. As a result, our study revealed that rtL180M (M) and rtM204V (V) mutations, already known as lamivudine-resistant mutations, confer resistance to BSV in the CHB patient.

4.
Mol Brain ; 14(1): 138, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34496933

ABSTRACT

To understand the information encoded in a connection between the neurons, postsynaptic current (PSC) has been widely measured as a primary index of synaptic strength in the field of neurophysiology. Although several automatic detection methods for PSCs have been proposed to simplify a workflow in the analysis, repetitive steps such as quantification and management of PSC data should be still performed with much effort. Here, we present Minhee Analysis Package, an integrated standalone software package that is capable of detecting, sorting, and quantifying PSC data. First, we developed a stepwise exploratory algorithm to detect PSC and validated our detection algorithm using the simulated and experimental data. We also described all the features and examples of the package so that users can use and follow them properly. In conclusion, our software package is expected to improve the convenience and efficiency of neurophysiologists to analyze PSC data by simplifying the workflow from detection to quantification. Minhee Analysis Package is freely available to download from http://www.github.com/parkgilbong/Minhee_Analysis_Pack .


Subject(s)
Neurons/physiology , Neurophysiology/methods , Software , Synapses/physiology , Synaptic Potentials , Algorithms , Analysis of Variance , Animals , Brain/physiology , Computer Simulation , Data Display , Male , Mice , Mice, Inbred C57BL , Miniature Postsynaptic Potentials , Models, Neurological , Pyramidal Cells/physiology , Statistics, Nonparametric , User-Computer Interface , Workflow
5.
Nat Commun ; 12(1): 5116, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34433814

ABSTRACT

NMDA receptor (NMDAR) and GABA neuronal dysfunctions are observed in animal models of autism spectrum disorders, but how these dysfunctions impair social cognition and behavior remains unclear. We report here that NMDARs in cortical parvalbumin (Pv)-positive interneurons cooperate with gap junctions to promote high-frequency (>80 Hz) Pv neuronal burst firing and social cognition. Shank2-/- mice, displaying improved sociability upon NMDAR activation, show impaired cortical social representation and inhibitory neuronal burst firing. Cortical Shank2-/- Pv neurons show decreased NMDAR activity, which suppresses the cooperation between NMDARs and gap junctions (GJs) for normal burst firing. Shank2-/- Pv neurons show compensatory increases in GJ activity that are not sufficient for social rescue. However, optogenetic boosting of Pv neuronal bursts, requiring GJs, rescues cortical social cognition in Shank2-/- mice, similar to the NMDAR-dependent social rescue. Therefore, NMDARs and gap junctions cooperate to promote cortical Pv neuronal bursts and social cognition.


Subject(s)
Gap Junctions/metabolism , Interneurons/physiology , Nerve Tissue Proteins/metabolism , Social Cognition , Synapses/physiology , Animals , Gap Junctions/genetics , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Parvalbumins/genetics , Parvalbumins/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Social Behavior , Synapses/genetics
6.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562603

ABSTRACT

Tenofovir disoproxil fumarate (TDF) has been regarded as the most potent drug for treating patients with chronic hepatitis B (CHB). However recently, viral mutations associated with tenofovir have been reported. Here, we found a CHB patient with suboptimal response after more than 4 years of TDF treatment. Clonal analysis of hepatitis B virus (HBV) isolated from sequential sera of this patient identified the seven previously reported TDF-resistant mutations (CYELMVI). Interestingly, a threonine to alanine mutation at the 301 amino acid position of the reverse-transcriptase (RT) domain, (rtT301A), was commonly accompanied with CYELMVI at a high rate (72.7%). Since the rtT301A mutation has not been reported yet, we investigated the role of this naturally occurring mutation on the viral replication and susceptibility to tenofovir in various liver cells (hepatoma cells as well as primary human hepatocytes). A cell-based phenotypic assay revealed that the rtT301A mutation dramatically impaired the replication ability with meaningful reduction in sensitivity to tenofovir in hepatoma cell lines. However, attenuated viral replication by the rtT301A mutation was significantly restored in primary human hepatocytes (PHHs). Our findings suggest that the replication capability and drug sensitivity of HBV is different between hepatoma cell lines and PHHs. Therefore, our study emphasizes that validation studies should be performed not only in the liver cancer cell lines but also in the PHHs to understand the exact viral fitness under antiviral pressure in patients.


Subject(s)
Hepatitis B virus/drug effects , Hepatocytes/drug effects , Hepatocytes/virology , Tenofovir/pharmacology , Antiviral Agents/pharmacology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cells, Cultured , Drug Resistance, Viral/genetics , Female , Genes, Viral , Hep G2 Cells , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Hepatocytes/metabolism , Humans , Liver Neoplasms/genetics , Middle Aged , Point Mutation , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Inhibitors/pharmacology , Viral Proteins/genetics , Virus Replication/drug effects , Virus Replication/genetics
7.
Int J Mol Sci ; 21(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023898

ABSTRACT

Hepatitis B virus (HBV) infection is a major factor in the development of various liver diseases such as hepatocellular carcinoma (HCC). Among HBV encoded proteins, HBV X protein (HBx) is known to play a key role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor which is critical for hepatocyte differentiation. However, the expression level as well as its regulatory mechanism in HBV infection have yet to be clarified. Here, we observed the suppression of HNF4α in cells which stably express HBV whole genome or HBx protein alone, while transient transfection of HBV replicon or HBx plasmid had no effect on the HNF4α level. Importantly, in the stable HBV- or HBx-expressing hepatocytes, the downregulated level of HNF4α was restored by inhibiting the ERK signaling pathway. Our data show that HNF4α was suppressed during long-term HBV infection in cultured HepG2-NTCP cells as well as in a mouse model following hydrodynamic injection of pAAV-HBV or in mice intravenously infected with rAAV-HBV. Importantly, HNF4α downregulation increased cell proliferation, which contributed to the formation and development of tumor in xenograft nude mice. The data presented here provide proof of the effect of HBV infection in manipulating the HNF4α regulatory pathway in HCC development.


Subject(s)
Carcinoma, Hepatocellular/virology , Hepatitis B/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Liver Neoplasms/virology , Trans-Activators/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Down-Regulation , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Hepatitis B/genetics , Hepatitis B/virology , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Nude , Neoplasm Transplantation
8.
EMBO Rep ; 20(9): e45907, 2019 09.
Article in English | MEDLINE | ID: mdl-31359606

ABSTRACT

Long-term memory formation is attributed to experience-dependent gene expression. Dynamic changes in histone methylation are essential for the epigenetic regulation of memory consolidation-related genes. Here, we demonstrate that the plant homeodomain finger protein 2 (PHF2) histone demethylase is upregulated in the mouse hippocampus during the experience phase and plays an essential role in memory formation. PHF2 promotes the expression of memory-related genes by epigenetically reinforcing the TrkB-CREB signaling pathway. In behavioral tests, memory formation is enhanced by transgenic overexpression of PHF2 in mice, but is impaired by silencing PHF2 in the hippocampus. Electrophysiological studies reveal that PHF2 elevates field excitatory postsynaptic potential (fEPSP) and NMDA receptor-mediated evoked excitatory postsynaptic current (EPSC) in CA1 pyramidal neurons, suggesting that PHF2 promotes long-term potentiation. This study provides insight into the epigenetic regulation of learning and memory formation, which advances our knowledge to improve memory in patients with degenerative brain diseases.


Subject(s)
Histone Demethylases/metabolism , Homeodomain Proteins/metabolism , Memory Consolidation/physiology , Animals , Computational Biology , Epigenesis, Genetic/genetics , Hippocampus/metabolism , Histone Demethylases/genetics , Homeodomain Proteins/genetics , Male , Mass Spectrometry , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic
9.
Neuron ; 98(3): 588-601.e5, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29681532

ABSTRACT

Empathy is crucial for our emotional experience and social interactions, and its abnormalities manifest in various psychiatric disorders. Observational fear is a useful behavioral paradigm for assessing affective empathy in rodents. However, specific genes that regulate observational fear remain unknown. Here we showed that 129S1/SvImJ mice carrying a unique missense variant in neurexin 3 (Nrxn3) exhibited a profound and selective enhancement in observational fear. Using the CRISPR/Cas9 system, the arginine-to-tryptophan (R498W) change in Nrxn3 was confirmed to be the causative variant. Selective deletion of Nrxn3 in somatostatin-expressing (SST+) interneurons in the anterior cingulate cortex (ACC) markedly increased observational fear and impaired inhibitory synaptic transmission from SST+ neurons. Concordantly, optogenetic manipulation revealed that SST+ neurons in the ACC bidirectionally controlled the degree of socially transmitted fear. Together, these results provide insights into the genetic basis of behavioral variability and the neurophysiological mechanism controlling empathy in mammalian brains.


Subject(s)
Empathy/physiology , Fear/physiology , Genetic Loci/physiology , Genetic Variation/physiology , Mutation, Missense/physiology , Nerve Tissue Proteins/genetics , Animals , Fear/psychology , Male , Mice , Mice, 129 Strain , Mice, Inbred ICR , Species Specificity
10.
Neurosci Lett ; 535: 45-50, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23313132

ABSTRACT

Firing regularity has long been an issue of firing dynamics in the vestibular circuitry. Spike frequency adaption (SFA) is ubiquitous in neuronal activity and can modulate neural coding, which may disrupt the regularity or accuracy of firing. We previously observed different characteristics of intrinsic excitability in Purkinje cells (PCs) of lobule X (vestibulocerebellum) compared to lobules III-V (spinocerebellum). However, systematic comparison of the extent of SFA in PCs of different lobules has not yet been made. In this study we examined the degree of SFA and compared the firing regularity by measuring interspike interval (ISI). During the course of low-frequency spike trains, PCs in lobules III-V showed gradual lengthening of ISI due to SFA. In contrast, ISI showed little change during the propagation of spikes in lobule X PCs. In high-frequency firing, PCs in lobules III-V exhibited gradual SFA, whereas lobule X neurons showed dramatic increase in ISI during the first four spikes and then stayed unchanged. The coefficient of variation of ISI of lobule X PCs was significantly lower in lobules III-V PCs during low-frequency firing. The comparison of duration of action potential showed no significant difference between lobules III-V and lobule X PCs during SFA even in low-frequency firing. The lack of SFA in lobule X PCs, as a part of vestibulocerebellum, might be involved in a consistent and regular coordination of vestibular function by the cerebellar cortex in response to low vestibular stimulation. However, the difference of SFA between lobules may be explained by other mechanisms than those which have been reported to be responsible for the SFA formation.


Subject(s)
Cerebellum/physiology , Purkinje Cells/physiology , Vestibule, Labyrinth/physiology , Action Potentials , Animals , Cerebellum/cytology , In Vitro Techniques , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...