Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 157: 107037, 2021 04.
Article in English | MEDLINE | ID: mdl-33278586

ABSTRACT

The purplish bifurcate mussel Mytilisepta virgata is widely distributed and represents one of the major components of the intertidal community in the northwestern Pacific (NWP). Here, we characterized population genetic structure of NWP populations throughout nearly their whole distribution range using both mitochondrial (mtDNA cox1) and nuclear (ITS1) markers. Population genetic analyses for mtDNA cox 1 sequences revealed two monophyletic lineages (i.e., southern and northern lineages) geographically distributed according to the two different surface water temperature zones in the NWP. The timing of the lineage split is estimated at the Pliocene- mid-Pleistocene (5.49-1.61 Mya), which is consistent with the timing of the historical isolation of the East Sea/Sea of Japan from the South and East China Seas due to sea level decline during glacial cycles. Historical sea level fluctuation during the Pliocene-Pleistocene and subsequent adaptation of mussels to different surface water temperature zones may have contributed to shaping the contemporary genetic diversity and deep divergence of the two mitochondrial lineages. In contrast to mtDNA sequences, a clear lineage split between the two mitochondrial lineages was not found in ITS1 sequences, which showed a star-like structure composed of a mixture of southern and northern mitochondrial lineages. Possible reasons for this type of mito-nuclear discordance include stochastic divergence in the coalescent processes of the two molecular markers, or balancing selection under different marine environments. Cryptic speciation cannot be ruled out from these results, and future work using genomic analyses is required to address whether the thermal physiology of these mussels corresponds to the deep divergence of their mitochondrial genes and to test for the existence of morphologically indistinguishable but genetically separate cryptic species.


Subject(s)
Cell Nucleus/genetics , Mitochondria/genetics , Mytilidae/genetics , Phylogeography , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Genetic Variation , Genetics, Population , Haplotypes/genetics , Pacific Ocean , Phylogeny , Principal Component Analysis , Time Factors
2.
Mol Phylogenet Evol ; 139: 106533, 2019 10.
Article in English | MEDLINE | ID: mdl-31185299

ABSTRACT

The family Mytilidae is a family of bivalve mussels that are distributed worldwide in diverse marine habitats. Within the family, classification systems and phylogenetic relationships among subfamilies remain not yet fully resolved. In this study, we newly determined 9 mitochondrial genome sequences from 7 subfamilies: Bathymodiolus thermophilus (Bathymodiolinae), Modiolus nipponicus (Modiolinae), Lithophaga curta (the first representative of Lithophaginae), Brachidontes mutabilis (Brachidontinae), Mytilisepta virgata (Brachidontinae), Mytilisepta keenae (Brachidontinae), Crenomytilus grayanus (Mytilinae), Gregariella coralliophaga (Crenellinae), and Septifer bilocularis (the first representative of Septiferinae). Phylogenetic trees using maximum likelihood and Bayesian inference methods for 28 mitochondrial genomes (including 19 previously published sequences) showed two major clades with high support values: Clade 1 ((Bathymodiolinae + Modiolinae) + (Lithophaginae + Limnoperninae)) and Clade 2 (((Mytilinae + Crenellinae) + Septiferinae) + Brachidontinae). The position of the genus Lithophaga (representing Lithophaginae) differed from a previously published molecular phylogeny. Divergence time analysis with a molecular clock indicated that lineage splitting among the major subfamilies of Mytilidae (including the habitat transition from marine to freshwater environments by ancestral Limnoperninae) occurred in the Mesozoic period, coinciding with high diversification rates of marine fauna during that time. This is the first mitochondrial genome-based phylogenetic study of the Mytilidae that covers nearly all subfamily members, excluding the subfamily Dacrydiinae.


Subject(s)
Genome, Mitochondrial , Mytilidae/classification , Mytilidae/genetics , Phylogeny , Animals , Bayes Theorem , Gene Rearrangement/genetics , Genes, Mitochondrial , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...