Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(15): 27171-27179, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236894

ABSTRACT

A software-defined optical receiver is implemented on an off-the-shelf commercial graphics processing unit (GPU). The receiver provides real-time signal processing functionality to process 1 GBaud minimum phase (MP) 4-, 8-, 16-, 32-, 64-, 128-ary quadrature amplitude modulation (QAM) as well as geometrically shaped (GS) 8- and 128-QAM signals using Kramers-Kronig (KK) coherent detection. Experimental validation of this receiver over a 91 km field-deployed optical fiber link between two Tokyo locations is shown with detailed optical signal-to-noise ratio (OSNR) investigations. A net data rate of 5 Gbps using 64-QAM is demonstrated.

2.
Opt Express ; 30(6): 8742-8749, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299320

ABSTRACT

We demonstrate the lateral monolithic integration of a tunable first-order surface-grating loaded vertical-cavity surface-emitting laser (VCSEL) and slow-light waveguide with fan-beam steering and amplifier function. Shallow Bragg-grating formed on the surface of a VCSEL section enables the selection of a single slow-light mode, which can be coupled into the integrated long waveguide and amplified through pumping the amplifier above threshold. We obtained over 3W amplified slow-light power with single-mode operation and over 4W amplified quasi-single-mode power under pulsed current injection. To the best of our knowledge, this is the highest output power for single-mode VCSELs. Solid-state beam steering of the device is also demonstrated with 9° fan-beam steering range and 200 resolution points.

3.
Opt Express ; 29(18): 28104-28109, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34614949

ABSTRACT

This work proposes an approach for the compensation of inter-core skew in homogeneous single-mode multi-core fiber links. We adjust the wavelengths of the transmitted spatial channels in such a way that the skew induced by group velocity counters inter-core skew. This approach is demonstrated experimentally using a 111 Gb/s spatial super channel (4 spatial channels at 27.8 Gb/s) on a 10.1 km 19-core multi-core fiber. It is shown that inter-core skew may be compensated without the need for devices such as variable optical delay lines or electronic buffers.

4.
Opt Express ; 28(3): 4067-4075, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122066

ABSTRACT

We propose and evaluate a method to estimate the DC bias required for AC-coupled Kramers-Kronig receivers. The proposed method is based on a spectral analysis of the reconstructed signal without requiring an evaluation of the signal quality. The proposed method is described analytically and demonstrated experimentally using 12.5 GBaud 16-ary quadrature-amplitude modulated signals in back-to-back and after 100 km transmission.

5.
Appl Opt ; 57(2): 146-153, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29328158

ABSTRACT

Volume holographic demultiplexers (VHDMs) provide spatial mode demultiplexing using simple optical systems. However, applying VHDM to practical optical communication systems is difficult, as typical holographic media have no sensitivity in the infrared region, which includes optical transmission bands. In this paper, we propose a VHDM scheme combined with a dual-wavelength method (DWM). Using the DWM, VHDMs are able to perform mode demultiplexing in the optical transmission bands. We experimentally demonstrated the basic operation of our proposal using experiments performed at an 850-nm wavelength. In addition, we performed numerical simulations to investigate the application of VHDM to the C-band.

6.
Opt Express ; 24(4): 3702-12, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907026

ABSTRACT

An important challenge for implementing optical signal processing functions such as wavelength conversion or wavelength data exchange (WDE) is to avoid the introduction of linear and nonlinear phase noise in the subsystem. This is particularly important for phase noise sensitive, high-order quadrature-amplitude modulation (QAM) signals. In this paper, we propose and experimentally demonstrate an optical data exchange scheme through cascaded 2nd-order nonlinearities in periodically-poled lithium niobate (PPLN) waveguides using coherent pumping. The proposed coherent pumping scheme enables noise from the coherent pumps to be cancelled out in the swapped data after WDE, even with broad linewidth distributed feedback (DFB) pump lasers. Hence, this scheme allows phase noise tolerant processing functions, enabling the low-cost implementation of WDE for high-order QAM signals. We experimentally demonstrate WDEs between 10-Gbaud 4QAM (4QAM) signal and 12.5-Gbaud 4QAM (16QAM) signal with 3.5-MHz linewidth DFB pump lasers and 50-GHz channel spacing. Error-free operation is observed for the swapped QAM signals with coherent DFB pumping whilst use of free-running DFB pumps leads to visible error floors and unrecoverable phase errors. The phase noise cancellation in the coherent pump scheme is further confirmed by study of the recovered carrier phase of the converted signals. In addition to pump phase noise, the influence of crosstalk caused by the finite extinction ratio in WDE is also experimentally investigated for the swapped QAM signals.

7.
Opt Lett ; 40(2): 288-91, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25679866

ABSTRACT

In this Letter, we investigate the influence of the phase and power of pump and signal waves on the gain of a four-mode phase-sensitive amplifier (PSA) built with a highly nonlinear fiber (HNLF), using a copier + PSA scheme to generate phase- and frequency-correlated idler waves. Using such an amplifier, low-noise amplification of a 10 Gsymbol/s quadrature phase-shift keying (QPSK) signal, with net gain of ∼20 dB and less than 1 dB optical signal-to-noise ratio (OSNR) penalty at a bit error ratio (BER) of 10(-3), was achieved. We also verified an additional net gain of 11.6 dB when switching from phase-insensitive to phase-sensitive operation, which is in good agreement with theoretical predictions of 12 dB.

8.
Opt Express ; 22(5): 5067-75, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24663846

ABSTRACT

Optical wavelength conversion (OWC) is expected to be a desirable function in future optical transparent networks. Since high-order quadrature amplitude modulation (QAM) is more sensitive to the phase noise, in the OWC of high-order QAM signals, it is crucial to suppress the extra noise introduced in the OWC subsystem, especially for the scenario with multiple cascaded OWCs. Here, we propose and experimentally demonstrate a pump-linewidth-tolerant OWC scheme suitable for high-order QAM signals using coherent two-tone pumps. Using 3.5-MHz-linewidth distributed feedback (DFB) lasers as pump sources, our scheme enables wavelength conversion of both 16QAM and 64QAM signals with negligible power penalty, in a periodically-poled Lithium Niobate (PPLN) waveguide based OWC. We also demonstrate the performance of pump phase noise cancellation, showing that such coherent two-tone pump schemes can eliminate the need for ultra-narrow linewidth pump lasers and enable practical implementation of low-cost OWC in future dynamic optical networks.

9.
Opt Express ; 21(19): 22063-9, 2013 Sep 23.
Article in English | MEDLINE | ID: mdl-24104098

ABSTRACT

We investigate phase-sensitive amplification (PSA) and phase regeneration of a binary phase-shift keying (BPSK) signal using a single periodically poled lithium niobate (PPLN) waveguide. The PPLN is operated bi-directionally in order to simultaneously achieve phase correlated signals and phase-sensitive (PS) operation. We use injection-locking for carrier phase recovery and a lead zirconate titanate (PZT) fiber stretcher to correct path length deviations in the in-line phase regenerator. We observe a trade-off between high PS gain provided by high pumping power and stability of the device.

10.
Opt Express ; 21(26): 32589-98, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24514852

ABSTRACT

We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.

11.
Opt Express ; 20(26): B535-42, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23262899

ABSTRACT

We demonstrated 20-Gbit/s 16 quadrature amplitude modulation (16-QAM) optical packet switching and real-time detection using self-homodyne. A prototype modulator consisting of an in-phase and quadrature (I-Q) modulator and monolithically integrated polarization beam splitters generated modulated signals and polarization-multiplexed pilot-carriers simultaneously. Self-homodyne detection using the pilot-carrier was resilient to phase noise and self-phase modulation, and the constellation was obtained in real time without digital signal processing. A low-polarization-dependent (Pb,La)(Zr,La)O(3) (PLZT) optical switch in the optical packet switch handled both 16-QAM optical packets and the polarization multiplexed pilot-carrier. Even after packet switching, a clear constellation diagram was obtained, and error-free operation was confirmed in real-time using a packet bit-error rate tester (BERT).

12.
Opt Express ; 20(27): 28764-71, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23263115

ABSTRACT

We newly developed a 3 × 3 integrated optical packet and circuit switch-node. Optical buffers and burst-mode erbium-doped fiber amplifiers with the gain flatness are installed in the 3 × 3 switch-node. The optical buffer can prevent packet collisions and decrease packet loss. We constructed a multi-ring optical packet and circuit integrated network testbed connecting two single-ring networks and a client network by the 3 × 3 switch-node. For the first time, we demonstrated 244 km fiber transmission and 5-node hopping of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10 Gigabit Ethernet frames on the testbed. Error-free (frame error rate < 1 × 10(-4)) operation was achieved with optical packets of various packet lengths. In addition, successful avoidance of packet collisions by optical buffers was confirmed.


Subject(s)
Amplifiers, Electronic , Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Lasers , Equipment Design , Equipment Failure Analysis , Systems Integration
13.
Opt Express ; 20(7): 7544-54, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22453433

ABSTRACT

We perform experimental and numerical investigations of the transmission reach of polarization-switched QPSK (PS-QPSK) and polarization-multiplexed QPSK (PM-QPSK) for three different fiber span lengths: 83, 111 and 136 km. In the experimental comparison we investigate the performance of PS-QPSK at 20 Gbaud and PM-QPSK at the same bit rate (60 Gbit/s) and at the same symbol rate, both the single channel case and a WDM system with 9 channels on a 50 GHz grid. We show that PS-QPSK gives significant benefits in transmission reach for all span lengths. Compared to PM-QPSK, use of PS-QPSK increases the reach with more than 41% for the same symbol rate and 21% for the same bit rate. In the numerical simulations we use the same data rates as in the experiment. The simulation results agree well with the experimental findings, but the transmission reach is longer due to the absence of various non-ideal effects and higher back-to-back sensitivity. Apart from using data coded in the absolute phase in the simulations, we also investigate differentially coded PS-QPSK for the first time and compare with PM-QPSK with differential coding. The power efficiency advantage of PS-QPSK then increases with approximately 0.3 dB at a bit error rate of 10⁻³, resulting in a further relative transmission reach improvement over PM-QPSK. Both the experimental and the numerical results indicate that PS-QPSK has slightly higher tolerance to inter-channel nonlinear crosstalk than PM-QPSK.


Subject(s)
Fiber Optic Technology/instrumentation , Lasers , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Models, Theoretical , Scattering, Radiation
14.
Opt Express ; 19(26): B131-9, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274009

ABSTRACT

We investigate the phase squeezing characteristics of non-degenerate phase-sensitive-amplifiers (PSAs) based on periodically-poled-lithium-niobate (PPLN) waveguides. We implement two PSA configurations with phase insensitive idler generation performed in both highly-non-linear-fiber (HNLF) and PPLN waveguides. In both cases we demonstrate regeneration of a noisy BPSK signal, despite net signal attenuation in the phase sensitive PPLN, and show that the level of phase squeezing varies with the phase sensitive dynamic range (PSDR). We observe that weak idler generation in the PPLN limits the achievable PSDR and that use of HNLF for idler generation leads to the largest PSDR. However, in phase regeneration measurements we observe that the pump phase modulation, required to overcome stimulated Brillouin scattering, adds significant amplitude noise, which increases with the PSDR.

15.
Opt Express ; 19(26): B242-50, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274025

ABSTRACT

We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated.

16.
Opt Express ; 19(26): B406-14, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274050

ABSTRACT

We demonstrate 2.56 Tbit/s/port dual-polarization DWDM/DQPSK variable-length optical packet (20 Gbit/s × 64 wavelengths × 2 polarizations) switching and buffering by using a 2×2 optical packet switch (OPS) system. The optical data plane of the OPS system was constructed of multi-connected electro-optical switches and fiber delay lines. The accumulated polarization dependent loss of each optical path in the data plane was less than 5 dB. This low-polarization-dependence OPS system enabled us to handle DWDM/DQPSK optical packets (1.28 Tbit/s/port) with time-varying polarization after transmission through 100 km fiber in the field.

17.
Opt Express ; 18(6): 6064-70, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20389627

ABSTRACT

We experimentally demonstrated ultra-fast phase-transparent wavelength conversion using cascaded sum- and difference-frequency generation (cSFG-DFG) in linear-chirped periodically poled lithium niobate (PPLN). Error-free wavelength conversion of a 160-Gb/s return-to-zero differential phase-shift keying (RZ-DPSK) signal was successfully achieved. Thanks to the enhanced conversion bandwidth in the PPLN with linear-chirped periods, no optical equalizer was required to compensate the spectrum distortion after conversion, unlike a previous demonstration of 160-Gb/s RZ on-off keying (OOK) using fixed-period PPLN.


Subject(s)
Lasers , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Linear Models , Microwaves
SELECTION OF CITATIONS
SEARCH DETAIL
...