Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1180658, 2023.
Article in English | MEDLINE | ID: mdl-37424723

ABSTRACT

Black-bone chicken (BBC) meat is popular for its distinctive taste and texture. A complex chromosomal rearrangement at the fibromelanosis (Fm) locus on the 20th chromosome results in increased endothelin-3 (EDN3) gene expression and is responsible for melanin hyperpigmentation in BBC. We use public long-read sequencing data of the Silkie breed to resolve high-confidence haplotypes at the Fm locus spanning both Dup1 and Dup2 regions and establish that the Fm_2 scenario is correct of the three possible scenarios of the complex chromosomal rearrangement. The relationship between Chinese and Korean BBC breeds with Kadaknath native to India is underexplored. Our data from whole-genome re-sequencing establish that all BBC breeds, including Kadaknath, share the complex chromosomal rearrangement junctions at the fibromelanosis (Fm) locus. We also identify two Fm locus proximal regions (∼70 Kb and ∼300 Kb) with signatures of selection unique to Kadaknath. These regions harbor several genes with protein-coding changes, with the bactericidal/permeability-increasing-protein-like gene having two Kadaknath-specific changes within protein domains. Our results indicate that protein-coding changes in the bactericidal/permeability-increasing-protein-like gene hitchhiked with the Fm locus in Kadaknath due to close physical linkage. Identifying this Fm locus proximal selective sweep sheds light on the genetic distinctiveness of Kadaknath compared to other BBC.

2.
Sci Rep ; 11(1): 24437, 2021 12 24.
Article in English | MEDLINE | ID: mdl-34952909

ABSTRACT

Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Animals , Humans , Oxidation-Reduction , Oxidative Phosphorylation
3.
Gene ; 769: 145214, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33039539

ABSTRACT

Mesua ferrea (Family: Calophyllaceae) is a tropical forest plant used for timber, biofuel, and traditional medicine. Colloquially, it is known as Nagkesar (Cobra saffron) and is the state flower of Tripura (India). In this study, we perform the whole-genome assembly of Mesua ferrea using ~180X coverage paired-end Illumina data. Our de novo assembly is 614 Mega-base pair (Mbp), has an N50 of 392 Kilo-base pairs (Kbp), and an assembly quality comparable to other published Malpighiales genomes. Further, we collate the genomic datasets of 14 additional forest tree species to compare the temporal dynamics of Effective Population Size (Ne) and find evidence of a substantial bottleneck in all tropical forest plants during Mid-Pleistocene glaciations. The availability of this high-quality draft genome assembly will prove to be a useful resource for functional and comparative genomic studies.


Subject(s)
Genome, Plant , Malpighiales/genetics , Trees/genetics , Datasets as Topic , Mutation
4.
Immunogenetics ; 72(9-10): 507-515, 2020 12.
Article in English | MEDLINE | ID: mdl-33247773

ABSTRACT

The loss of conserved genes has the potential to alter phenotypes drastically. Screening of vertebrate genomes for lineage-specific gene loss events has identified numerous natural knockouts associated with specific phenotypes. We provide evidence for the loss of a multi-exonic plasminogen receptor KT (PLGRKT) protein-encoding gene located on the Z chromosome in chicken. Exons 1 and 2 are entirely missing; remnants of exon 3 and a mostly intact exon 4 are identified in an assembly gap-free region in chicken with conserved synteny across species and verified using transcriptome and genome sequencing. PLGRKT gene disrupting changes are present in representative species from all five galliform families. In contrast to this, the presence of an intact transcriptionally active PLGRKT gene in species such as mallard, swan goose, and Anolis lizard suggests that gene loss occurred in the galliform lineage sometime between 68 and 80 Mya. The presence of galliform specific chicken repeat 1 (CR1) insertion at the erstwhile exon 2 of PLGRKT gene suggests repeat insertion-mediated loss. However, at least nine other independent PLGRKT coding frame disrupting changes in other bird species are supported by genome sequencing and indicate a role for relaxed purifying selection before CR1 insertion. The recurrent loss of a conserved gene with a role in the regulation of macrophage migration, efferocytosis, and blood coagulation is intriguing. Hence, we propose potential candidate genes that might be compensating the function of PLGRKT based on the presence of a C-terminal lysine residue, transmembrane domains, and gene expression patterns.


Subject(s)
Chickens/genetics , Evolution, Molecular , Phylogeny , Plasminogen/metabolism , Receptors, Cell Surface/deficiency , Amino Acid Sequence , Animals , Chromosome Mapping , Genome , Receptors, Cell Surface/genetics , Sequence Homology
5.
J Mol Evol ; 87(7-8): 209-220, 2019 09.
Article in English | MEDLINE | ID: mdl-31372666

ABSTRACT

The CYP8B1 gene is known to catalyse reactions that determine the ratio of primary bile salts and the loss of this gene has recently been linked to lack of cholic acid in the bile of naked-mole rats, elephants and manatees using forward genomics approaches. We screened the CYP8B1 gene sequence of more than 200 species and test for relaxation of selection along each terminal branch. The need for retaining a functional copy of the CYP8B1 gene is established by the presence of a conserved open reading frame across most species screened in this study. Interestingly, the dietary switch from bovid to cetacean species is accompanied by an exceptional ten amino acid extension at the C-terminal end through a single base frame-shift deletion. We also verify that the coding frame disrupting mutations previously reported in the elephant are correct, are shared by extinct Elephantimorpha species and coincide with the dietary switch to herbivory. Relaxation of selection in the CYP8B1 gene of the wombat (Vombatus ursinus) also corresponds to drastic change in diet. In summary, our forward genomics-based screen of bird and mammal species identifies recurrent changes in the selection landscape of the CYP8B1 gene concomitant with a change in dietary lipid content.


Subject(s)
Steroid 12-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Animals , Bile Acids and Salts/genetics , Bile Acids and Salts/metabolism , Birds/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Databases, Genetic , Diet , Evolution, Molecular , Lipid Metabolism , Lipids , Mammals/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...