Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Nutr Biochem ; 119: 109384, 2023 09.
Article in English | MEDLINE | ID: mdl-37209954

ABSTRACT

Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These preclinical findings suggest a special attention towards the detrimental effect of sesamol in postmenopausal women.


Subject(s)
Osteoclasts , Ovary , Humans , Rats , Female , Animals , Rats, Sprague-Dawley , Ovariectomy , Estrogens
2.
J Nutr Biochem ; 113: 109245, 2023 03.
Article in English | MEDLINE | ID: mdl-36473540

ABSTRACT

Early balanced nutrition is vital in achieving optimal skeletal mass and its maintenance. Although a lower omega-6 (n-6): omega-3 (n-3) long-chain polyunsaturated fatty acid (LC-PUFA) ratio is strongly linked with bone health, its maternal effect in the programming of the offspring's skeleton remains to be elucidated. Plugged C57BL/6 mice were fed either n-3 LC-PUFA Enriched Diet (LED) or a control diet (C) throughout their gestation and lactation. Offspring born to both the groups were weaned onto C till 6, 12, and 24 weeks of their age. Offspring's skeleton metabolism and serum fatty acid composition was studied. In humans, seventy-five mother-female newborns pairs from term gestation were tested for their maternal LC-PUFA status relationships to venous cord blood bone biomarkers. Offspring of maternal LED supplemented mice exhibited a superior bone phenotype over C, more prominent in females than males. A lower serum n-6/n-3 LC-PUFA in the LED group offspring was strongly associated with blood biomarkers of bone metabolism. Sexual dimorphism evidenced had a strong correlation between offspring's LC-PUFA levels and bone turnover markers in serum. A higher potential for osteoblastic differentiation in both LED offspring genders and reduced osteoclastogenesis in females was cell-autonomous effect. The human cross-sectional study also showed a positive correlation between maternal n-3 PUFA and cord blood markers of bone formation in female newborns at birth. Maternal dietary n-6/ n-3 fat quality determines offspring's bone growth and development. Our data suggest that the skeleton of female offspring is likely to be more sensitive to this early exposure.


Subject(s)
Bone Density , Fatty Acids, Omega-3 , Humans , Female , Male , Mice , Animals , Adult , Cross-Sectional Studies , Mice, Inbred C57BL , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated , Dietary Fats , Dietary Supplements
3.
Phytother Res ; 37(1): 329-341, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36086831

ABSTRACT

Obesity is a multi-factorial metabolic syndrome that increases the risk of cardiovascular diseases, diabetes, and cancer. We recently demonstrated the antiadipogenic efficacy of lutein using a 3 T3-L1 cell culture model. This study aimed to examine the antiobesity efficacy of lutein on high-fat (60% kcal fat) diet-induced C57BL/6J obese mice model. Lutein (300 and 500 µM), Orlistat (30 mg/kg body weight - positive control), and its combination (orlistat, 15 mg/kg body weight+lutein, 300 µM) were administered in high-fat diet (HFD)-fed mice every other day for 24 weeks. The effect on serum and hepatic lipid parameters was estimated using biochemical assay kits. The adipose tissue expression of adipocyte differentiation markers at gene and protein levels was analyzed by RT-PCR and western blotting, respectively. The results showed that lutein administration and drug significantly reduced epididymal and abdominal adipose tissue weights. Further, lutein reduced the serum cholesterol and LDL-C concentration compared to the HFD group. The HFD-induced elevation in the hepatic triglycerides and cholesterol levels were significantly blocked by lutein and its combination with the drug. Similarly, lutein and its drug combination efficiently lowered the HFD-mediated elevated blood glucose levels. Lutein downregulated the expression of CEBP-α, PPAR-γ, and FAS in the epididymal adipose tissue. Thus, supplementation of lutein may control diet-induced obesity and associated complications in the human population.


Subject(s)
Anti-Obesity Agents , Fatty Liver , Glucose Intolerance , Humans , Animals , Mice , Lutein/pharmacology , Lutein/metabolism , Diet, High-Fat/adverse effects , Glucose Intolerance/drug therapy , Orlistat/metabolism , Orlistat/pharmacology , Mice, Inbred C57BL , Obesity/etiology , Fatty Liver/drug therapy , Liver , Adipose Tissue , Anti-Obesity Agents/pharmacology , Cholesterol
4.
J Biol Chem ; 298(9): 102324, 2022 09.
Article in English | MEDLINE | ID: mdl-35931113

ABSTRACT

Cholesterol is one of the essential intrauterine factors required for fetal growth and development. Maternal high cholesterol levels are known to be detrimental for offspring health. However, its long-term effect on offspring skeletal development remains to be elucidated. We performed our studies in two strains of mice (C57BL6/J and Swiss Albino) and human subjects (65 mother-female newborn dyads) to understand the regulation of offspring skeletal growth by maternal high cholesterol. We found that mice offspring from high-cholesterol-fed dams had low birth weight, smaller body length, and delayed skeletal ossification at the E18.5 embryonic stage. Moreover, we observed that the offspring did not recover from the reduced skeletal mass and exhibited a low bone mass phenotype throughout their life. We attributed this effect to reduced osteoblast cell activity with a concomitant increase in the osteoclast cell population. Our investigation of the molecular mechanism revealed that offspring from high-cholesterol-fed dams had a decrease in the expression of ligands and proteins involved in hedgehog signaling. Further, our cross-sectional study of human subjects showed a significant inverse correlation between maternal blood cholesterol levels and cord blood bone formation markers. Moreover, the bone formation markers were significantly lower in the female newborns of hypercholesterolemic mothers compared with mothers with normal cholesterolemic levels. Together, our results suggest that maternal high cholesterol levels deleteriously program offspring bone mass and bone quality and downregulate the hedgehog signaling pathway in their osteoblasts.


Subject(s)
Cholesterol , Diet, High-Fat , Hedgehog Proteins , Hypercholesterolemia , Maternal-Fetal Exchange , Osteoblasts , Osteogenesis , Prenatal Exposure Delayed Effects , Animals , Cholesterol/adverse effects , Cross-Sectional Studies , Diet, High-Fat/adverse effects , Down-Regulation , Female , Hedgehog Proteins/metabolism , Humans , Infant, Newborn , Mice , Mice, Inbred C57BL , Osteoblasts/metabolism , Pregnancy , Signal Transduction
5.
Phytomedicine ; 99: 154024, 2022 May.
Article in English | MEDLINE | ID: mdl-35263671

ABSTRACT

BACKGROUND: Sida cordifolia is traditionally found in the Indian system of medicine, well known for its medicinal and nutritional properties among local natives. PURPOSE: The present study aims to investigate the osteo-protective effect of root and leaf ethanolic extract of S. cordifolia (RE and LE) and its underlying mechanism. METHODS: Antioxidant activity of RE and LE was assessed. Total phenolic and flavonoid content were determined. HPLC profiling of RE and LE was performed to examine the polyphenol content. The effect of RE and LE on osteoblast cells proliferation, differentiation, mineralization, and expression of the protein associated with osteogenesis were evaluated using primary calvarial osteoblast culture. Skeletal effects of RE and LE of S. cordifolia were investigated in C57BL/6J ovariectomized mice. Micro CT was employed to evaluate the alteration in trabecular and cortical bone microarchitecture. Histology studies were performed on the isolated vertebra. qPCR analysis and western blotting was done to check the key bone markers. RESULTS: RE and LE showed a potent antioxidant activity, owing to a notable polyphenol content. Both RE and LE did not alter the cell viability but significantly increased the osteoblast cell proliferation, differentiation, and mineralization. Moreover, they enhanced the mRNA expression of osteogenic genes. Both RE and LE stimulated the activation of ERK, AKT, and CREB. Both RE and LE had no direct effect on osteoclastogenesis, but both increased Opg/Rankl ratio expression in osteoblast cells. Both RE and LE at 750 mg/kg/day significantly improved the trabecular and cortical microarchitecture of femur and tibia by increasing bone mineral density, bone volume fraction, trabecular number, and trabecular thickness, and decreasing trabecular separation and structural model index in ovariectomized mice. Furthermore, vertebral histology of lumbar vertebrae revealed that RE and LE significantly enhance the vertebral bone mass and exert osteo-protective effects by stimulating osteoblast function and inhibiting osteoclast function. CONCLUSION: In conclusion, both RE and LE stimulate osteoblast differentiation through activating ERK, AKT, and CREB signalling pathways and indirectly inhibits osteoclast differentiation. RE and LE also improve the trabecular and cortical microarchitecture of ovariectomized mice, making it a promising agent to prevent postmenopausal bone loss.

6.
J Food Sci ; 86(5): 2091-2102, 2021 May.
Article in English | MEDLINE | ID: mdl-33864254

ABSTRACT

The study was conducted to investigate the efficacy of Citrus maxima (Pomelo) fruit segments fortified paranthas compared to pomelo juice and naringin in streptozotocin-induced diabetic rats. The animals were divided into nine groups, Groups 1 to 3: negative control; Group 4: diabetic control; Groups 5 through 8: treatments with pomelo juice, naringin, plain paranthas, and pomelo supplemented paranthas; and Group 9 was positive control metformin. The groups were monitored for weight, oral glucose tolerance, insulin tolerance, bioavailability, biochemical parameters, and histopathological studies. Based on the result the group treated with paranthas fortified with pomelo fruit segment (Group 8) showed 19% of overall weight gain, approximately 50% reduction in plasma glucose level and improved serum protein (5.70 g/dl) and serum insulin (8.54 ng/ml) level as compared against diabetic control. The treatments had effectively lowered the level of liver enzyme and lipids (except HDL) in the serum along with the improved renal function. The group treated with pomelo juice and pomelo supplemented paranthas exhibited marked tolerance to the glucose and insulin similar to the positive control. Therefore, the antidiabetic activity was found to be more pronounced in the order of pomelo juice > fortified paranthas > naringin. Since pomelo juice is bitter and astringent in nature, the fruit can be better utilized in the form of fortified paranthas, which exerts antidiabetic effect similar to the positive control metformin. Hence, paranthas supplemented with pomelo fruit segments (bioactives-rich) aids in the reducing the risk of diabetes and can be recommended to gain nutritional benefits for normal and diabetic populations.


Subject(s)
Citrus/chemistry , Diabetes Mellitus, Experimental/drug therapy , Dietary Supplements , Flavanones/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Animals , Blood Glucose/analysis , Insulin/blood , Male , Rats , Rats, Wistar
7.
Cell Mol Life Sci ; 78(4): 1729-1744, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32734584

ABSTRACT

Maternal nutrition is crucial for the offspring's skeleton development and the onset of osteoporosis later in life. While maternal low protein diet has been shown to regulate bone mass negatively, the effect of a high protein diet (HP) remains unexplored. Here, we found that C57BL/6 mice fed with HP delivered offspring with decreased skeletal mineralization at birth and reduced bone mass throughout their life due to a decline in their osteoblast maturation. A small RNA sequencing study revealed that miR-24-1-5p was highly upregulated in HP group osteoblasts. Target prediction and validation studies identified SMAD-5 as a direct target of miR-24-1-5p. Furthermore, mimic and inhibitor studies showed a negative correlation between miR-24-1-5p expression and osteoblast function. Moreover, ex vivo inhibition of miR-24-1-5p reversed the reduced maturation and SMAD-5 expression in the HP group osteoblasts. Together, we show that maternal HP diminishes the bone mass of the offspring through miR-24-1-5p.


Subject(s)
Bone Development/genetics , Maternal Nutritional Physiological Phenomena/genetics , MicroRNAs/genetics , Smad5 Protein/genetics , Animals , Bone Density , Bone and Bones/metabolism , Cell Differentiation/genetics , Diet, High-Protein/adverse effects , Female , Humans , Maternal Nutritional Physiological Phenomena/physiology , Mice , Osteoblasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/pathology
8.
Int J Biol Macromol ; 163: 824-832, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32653370

ABSTRACT

In this study, multifunctional hydrogels containing host-guest complex formation between azobenzene-grafted carboxymethyl cellulose (CMC-Azo) and ß-cyclodextrin (CD) dimers connected by disulfide bonds with agarose for structural support were prepared. The obtained hydrogels exhibited self-healing properties by host-guest complexation as well as gel-sol phase transition in response to ultraviolet (UV) light and reducing agents. Photo-switchable properties of the hydrogels depend on changes in the complex formation of CD-dimers through the trans(450 nm) to cis(365 nm) photo-isomerization of azobenzene. The tensile and strain sweep tests confirmed that the hydrogel's self-healing ability was 79.44% and 81.59%, respectively. In addition, drug release from the hydrogels was controlled to accelerate to 80% in 3 h using UV light or reducing agent. Since the suggested photo-switchable, reduction-responsive, and self-healable hydrogels are non-cytotoxic, they can be potentially applied as biomedical materials in the development of hydrogel-based drug release systems.


Subject(s)
Azo Compounds/chemistry , Carboxymethylcellulose Sodium/chemistry , Delayed-Action Preparations/chemistry , Drug Carriers/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Hydrogels/radiation effects , Light , Drug Liberation , Magnetic Resonance Spectroscopy , Mechanical Phenomena , Molecular Structure , Photochemical Processes , Rheology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectroscopy, Fourier Transform Infrared
9.
FASEB J ; 34(5): 6854-6870, 2020 05.
Article in English | MEDLINE | ID: mdl-32275102

ABSTRACT

Adipocytes are key players in maintaining energy homeostasis and are classified into two different categories: white and brown adipocytes. While white adipocytes store energy as triacylglycerols in lipid droplets, brown adipocytes combust excess chemical energy and release in the form of heat through uncoupled respiration. This characteristic phenomenon of brown fat attracts researchers and pharmacological industries to view brown fat as one of the potential therapeutic targets for obesity and associated metabolic disease. In the current study, we investigated the effect of a small molecule, sesaminol (SML) on brown fat activity and found that SML induces the thermogenic program in primary white adipocytes as well as chow diet fed mice. In particular, SML treatment to mice elevated mitochondrial complex proteins and the rate of oxygen consumption in brown and white fat. Administration of SML to high fat diet (HFD) challenged mice decreased weight gain, adiposity and cholesterol levels along with an increase of brown fat gene program in brown and white fat. Mechanistically, SML repressed the myogenic gene program in C2C12 myoblasts and increased all mitochondrial marker genes as appeared in brown adipose cells. Together, our results demonstrate that SML stimulates brown adipose function and protects mice against diet-induced weight gain.


Subject(s)
Adipocytes, Beige/drug effects , Adipocytes, Brown/drug effects , Dioxoles/pharmacology , Furans/pharmacology , Muscle Development/drug effects , Adipocytes, Beige/cytology , Adipocytes, Beige/metabolism , Adipocytes, Brown/cytology , Adipocytes, Brown/metabolism , Adipocytes, White/cytology , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Adipogenesis/drug effects , Adiposity/drug effects , Animals , Cells, Cultured , Cellular Reprogramming/drug effects , Diet, High-Fat/adverse effects , Energy Metabolism/drug effects , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Models, Biological , Muscle Development/genetics , Muscle Development/physiology , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Thermogenesis/drug effects , Thermogenesis/physiology , Weight Gain/drug effects
10.
Polymers (Basel) ; 12(2)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050480

ABSTRACT

In this study we describe the use of an aminoethylamino-ß-cyclodextrin (AEA-ß-CD) as a supramolecular homogeneous catalyst for the synthesis of a series of diversely substituted quinaldine derivatives which are medicinally important, via Pfitzinger reaction. This supramolecular catalyst exhibited remarkable catalytic activity with high substrate scope to achieve the synthetic targets in good to excellent yield, 69-92%. The structural and morphological properties of the synthesized AEA-ß-CD were determined through MALDI-TOF mass spectrometry, NMR, FT-IR, and SEM analysis. Possible reaction mechanisms were determined through molecular host-guest complexation and proposed based on 2D NMR (ROESY) spectroscopy, FT-IR, FE-SEM, and DSC.

11.
Food Chem Toxicol ; 129: 466-475, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31082461

ABSTRACT

Targeted degrading Aspergillus niger-derived prolyl endopeptidase (AN-PEP) is promising in gluten hydrolysis because it specifically cleaves the proline-rich sites in gluten. The current study aims to understand the safety aspects of AN-PEP hydrolysed low immunoreactive wheat flours by testing immune responses using cell line and animal models. In the AN-PEP hydrolysed wheat flour (AN-PEP HWF) gliadin extract, there was no increase in the levels of zonulin-1 (Zo-1) and pro-inflammatory cytokines (IL-6 and IL-8) but a significant increase was noted in the control wheat flour (CWF) gliadin-treated Caco-2 cells. The Zo-1 localization in Caco-2 cells was significantly noted in the reacted positive fluorescence cells that were treated with the control wheat flour. Further, a safety evaluation of HWF was carried out in gluten-sensitized BALB/c mice. Mouse anti-gliadin (IgG, IgA and IgE) antibodies were significantly generated in the CWF treated animals rather than the AN-PEP HWF groups. The serum pro-inflammatory (IL-1ß, IL-4, IL-6, IL-15, TNF-α and IFN-γ) markers were observed in significant levels in CWF challenged mice and a similar trend was observed in ex-vivo splenocyte cells. A small intestine histopathological sectioning revealed that there are no abnormalities or structural changes in AN-PEP HWF challenged mice.


Subject(s)
Celiac Disease/immunology , Flour , Glutens/toxicity , Serine Endopeptidases/metabolism , Triticum/metabolism , Animals , Caco-2 Cells , Female , Humans , Hydrolysis , Inflammation Mediators/metabolism , Mice , Mice, Inbred BALB C , Plant Proteins/metabolism , Prolyl Oligopeptidases
12.
Polymers (Basel) ; 11(3)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30960458

ABSTRACT

Rhizobium leguminosarum biovar trifolii TA-1, a kind of soil bacteria, produces cyclosophoraoses (Cys). Cyclosophoraoses contain various ring sizes with degrees of polymerization ranging from 17 to 23. Atrazine is a hardly-soluble herbicide that contaminates soil and drinking water, and remains in soil for a long time. To remove this insoluble contaminant from aqueous solutions, we have enhanced the solubility of atrazine by complexation with Cys. The complex formation of Cys and atrazine was confirmed using ¹H nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), field emission scanning electron microscopy (FE-SEM), rotating frame nuclear overhauser spectroscopy (ROESY), and molecular modeling studies. The aqueous solubility of atrazine was enhanced 3.69-fold according to the added concentrations (20 mM) of Cys, compared to the 1.78-fold enhancements by ß-cyclodextrin (ß-CD). Cyclosophoraoses as an excellent solubility enhancer with long glucose chains that can effectively capture insoluble materials showed a potential application of microbial polysaccharides in the removal of hazardous hardly-soluble materials from aqueous solutions in the fields of biological and environmental industry.

13.
Interdiscip Sci ; 11(2): 307-319, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29086208

ABSTRACT

A Mobile Patient Monitoring System (MPMS) acquires patient's biosignals and transmits them using wireless network connection to the decision-making module or healthcare professional for the assessment of patient's condition. A variety of wireless network technologies such as wireless personal area networks (e.g., Bluetooth), mobile ad-hoc networks (MANET), and infrastructure-based networks (e.g., WLAN and cellular networks) are in practice for biosignals delivery. The wireless network quality-of-service (QoS) requirements of biosignals delivery are mainly specified in terms of required bandwidth, acceptable delay, and tolerable error rate. An important research challenge in the MPMS is how to satisfy QoS requirements of biosignals delivery in the environment characterized by patient mobility, deployment of multiple wireless network technologies, and variable QoS characteristics of the wireless networks. QoS requirements are mainly application specific, while available QoS is largely dependent on QoS provided by wireless network in use. QoS provisioning refers to providing support for improving QoS experience of networked applications. In resource poor conditions, application adaptation may also be required to make maximum use of available wireless network QoS. This survey paper presents a survey of recent developments in the area of QoS provisioning for MPMS. In particular, our contributions are as follows: (1) overview of wireless networks and network QoS requirements of biosignals delivery; (2) survey of wireless networks' QoS performance evaluation for the transmission of biosignals; and (3) survey of QoS provisioning mechanisms for biosignals delivery in MPMS. We also propose integrating end-to-end QoS monitoring and QoS provisioning strategies in a mobile patient monitoring system infrastructure to support optimal delivery of biosignals to the healthcare professionals.


Subject(s)
Mobile Health Units , Monitoring, Physiologic/standards , Quality of Health Care , Signal Processing, Computer-Assisted , Surveys and Questionnaires , Electric Power Supplies , Humans , Telemedicine , Wireless Technology
14.
Carbohydr Polym ; 198: 563-574, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30093035

ABSTRACT

A novel self-healing hydrogel was prepared from a cationic ß-cyclodextrin oligomer allyl ether [C(ßCD-OM)AE] using a triple cross-linking strategy combining electrostatic interaction, host-guest complexation, and CC bonds as the macrocrosslinker. Here, the C(ßCD-OM)AE@Ad gel was successfully prepared by polymerization of synthesized C(ßCD-OM)AE, 1-adamantyl acrylate, and acrylic acid. The triple cross-linked hydrogel shows multi-functionality of high mechanical strength, enhanced stability, cytocompatibility, pH responsiveness as well as self-healing ability. Based on the cooperative and synergetic forces of non-covalent and covalent bonds, the C(ßCD-OM)AE@Ad gel shows a high tensile strain up to 1,590%, and the self-healed gel could restore up to 84% of its initial length within 24 h. Furthermore, drug release in the hydrogel was controlled by the surrounding pH and slowly released. The present work reveals the cooperativity of multiple cross-links for a 3D structured polymeric material, and the developed self-healable hydrogel can possibly be applied in various biomedical applications.

15.
Carbohydr Polym ; 175: 493-501, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28917893

ABSTRACT

In the present study, cyclosophoraoses (CyS) (ß-1,2 linked cyclic glucans, with glucopyranose units ranging from 17 to 23) isolated from Rhizobium leguminosarum biovar viciae VF-39 were modified with carboxymethyl (CM) groups, and the pH-sensitive complexation of CM CyS with pindolol was investigated. The solubility of pindolol increased 32-fold by its complexation with 5mM CM CyS at pH 10, whereas it shows no significant change at pH 3. Pindolol, a ß-adrenergic blocking agent, has a hydrophobic nature at non-ionized state, and CM CyS could solubilize efficiently pindolol in a high alkaline solution. The carboxymethylation of flexible CyS allows them to present a more suitable cavity for the hydrophobic pindolol at pH 10, which is differentiated from CM ß-cyclodextrin (ß-CD). It can be interpreted as that the anionic repulsion effectively modulates the flexible and distorted conformation of CyS rather than rigid annular shape of ß-CD. Resultingly, the highly solubilized CM CyS/pindolol complex was characterized by UV-vis, T1 relaxation, ROESY, DOSY NMR spectroscopy, FT-IR spectroscopy, SEM, and molecular modeling studies. The antioxidant activity of pindolol was also improved 260% in the complex compared to free pindolol. The use of flexible host molecules with pH-responsive substituents would be applied in the development of smart systems for sensing or in biomedical fields.

16.
Molecules ; 22(8)2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28786953

ABSTRACT

Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbohydrates/chemistry , Hydrophobic and Hydrophilic Interactions , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Drug Delivery Systems , Drug Resistance, Bacterial , Humans , Oligosaccharides/chemistry , Solubility , Structure-Activity Relationship
17.
Food Funct ; 7(10): 4422-4431, 2016 Oct 12.
Article in English | MEDLINE | ID: mdl-27711821

ABSTRACT

Polyphenols act by scavenging reactive oxygen species during oxidative stress and hence are useful in the treatment of metabolic disorders including diabetes. This study describes the effect of polyphenol rich mulberry and jamun wines fed to streptozotocin-induced diabetic rats. To male adult Wistar rats, divided into groups (n = 10 per group) intraperitoneal injection was administered with streptozotocin at 38 mg per kg body weight for inducing diabetes. After confirmation of diabetes, rats divided into groups were fed each day with 5.7 milliliter per kg body weight of mulberry, jamun, white and red grape wines for 6 weeks. One group of animals received resveratrol at 20 mg per kg body weight. After six weeks of treatment, blood glucose, urinary profile, lipid profile, plasma, liver, kidney, brain and eye antioxidant enzyme activities, lipid peroxidation, non-esterified fatty acids (NEFA) and hepatic glutathione (GSH) content were determined. Though wine and resveratrol feeding did not improve the glycemic status of diabetic rats, increases in antioxidant enzymes and GSH content accompanied by reduced NEFA and lipid peroxidation were observed. The kidneys and brains of resveratrol fed rats showed significant reduction in malondialdehyde equivalents, exhibited an improved antioxidant status of tissues and an increased glutathione content. The findings suggested that the wines can ameliorate the consequences of diabetes due to their antioxidants.


Subject(s)
Antioxidants/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Morus/chemistry , Oxidative Stress/drug effects , Syzygium/chemistry , Wine/analysis , Animals , Antioxidants/chemistry , Lipid Peroxidation , Rats , Rats, Wistar
18.
Mol Divers ; 19(2): 367-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25802172

ABSTRACT

A new environmentally benign and highly convergent protocol for the synthesis of indolyl 4H-chromene derivatives has been developed. This one-pot three-component condensation reaction of salicylaldehyde, cyclic 1,3-diketones, and indole is promoted by PS-PTSA as a reusable heterogeneous acid catalyst under solvent-free conditions. This protocol demonstrates several notable advantages such as that the catalyst is readily available and can be recovered and reused for at least five runs without any significant impact on product yields, high atom economy, excellent yields, and efficiency of producing three new bonds (two C-C and one C-O) and one stereo center in a single operation.


Subject(s)
Benzenesulfonates/chemistry , Benzopyrans/chemistry , Polystyrenes/chemistry , Solvents/chemistry , Benzopyrans/chemical synthesis
19.
J Pharm Anal ; 3(4): 270-277, 2013 Aug.
Article in English | MEDLINE | ID: mdl-29403827

ABSTRACT

A novel, fast, sensitive and robust method based on ultra-performance liquid chromatography coupled to atmospheric pressure electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) has been developed to separate two Tibolone stereoisomers i.e., 3α-Hydroxy Tibolone and 3ß-Hydroxy Tibolone and to quantify 3α-Hydroxy Tibolone using p-toulenesulfonyl isocyanate (PTSI) as a derivatizing reagent in human plasma. 3α-Hydroxy Tibolone-13CD3 was used as an internal standard (IS). The analyte and IS were extracted from human plasma by liquid-liquid extraction using ethyl acetate. Extracted samples were analyzed by UPLC-ESI-MS/MS. Chromatography was performed using binary gradient on UPLC analytical column. A linear calibration curve over the range of 0.100-35.000 ng/mL was obtained and lower limit of quantification (LLOQ) was 0.100 ng/mL demonstrating acceptable accuracy and precision. This method was successfully applied to a pharmacokinetic study in order to compare a test Tibolone 2.5 mg formulation vs. a reference 2.5 mg Tibolone tablet formulation in 50 post-menopausal/surgical menopause female human volunteers under fasting conditions. It is concluded that test formulation of Tibolone is bioequivalent to reference formulation of Tibolone.

SELECTION OF CITATIONS
SEARCH DETAIL
...