Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(7): 3360-3367, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35143179

ABSTRACT

Certain biomolecules have proven to be difficult to analyze by liquid chromatography (LC), especially under certain chromatographic conditions. The separation of proteins in aqueous mobile phases is one such example because there is the potential for both hydrophobic and ionic secondary interactions to occur with chromatographic hardware to the detriment of peak recovery, peak shape, and the overall sensitivity of the LC analysis. To decrease non-specific adsorption and undesired secondary interactions between column hardware and biomolecules, we have developed and applied a new hydrophilically modified hybrid surface (h-HST) for size exclusion chromatography (SEC) and anion exchange (AEX) separations of proteins and nucleic acids. This surface incorporates additional oxygen and carbon atoms onto an ethylene bridge hybrid siloxane polymer. As a result, it exhibits reduced electrostatic properties and hydrophilicity that facilitates challenging aqueous separations. Flow injection tests with a phosphate buffer showed superior protein recovery from an h-HST frit when compared to unmodified ethylene-bridged hybrid HST, titanium, stainless steel, and PEEK frits. When applied to SEC of rituximab, ramucirumab, and trastuzumab emtansine with a 50 mM ammonium acetate buffer, this new hydrophilic chromatographic hardware yielded improved monomer and aggregate recovery, higher plate numbers, and more symmetrical peaks. AEX columns also benefited from h-HST hardware. An acidic mAb (eculizumab) showed improved recovery, more stable retention, and a sharper peak when eluted from an h-HST versus SS column. Moreover, AEX separations of intact mRNA samples (Cas9 and EPO mRNA) were improved, where it was seen that h-HST column hardware provided higher sensitivity and more repeatable peak areas from injection to injection. As such, there is significant potential in the use of h-HST chromatographic hardware to facilitate more robust and more sensitive analyses for a multitude of challenging separations and analytes.


Subject(s)
Chromatography, High Pressure Liquid , Chromatography, Gel , Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions
2.
J Chromatogr A ; 1666: 462855, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35144106

ABSTRACT

It is critical to the success of any chromatography-based assay that the performance of the LC instrument be checked for its readiness and ability to perform the intended analysis. This includes gaging the suitability of a system to fulfill the purpose of different types of methods. One type of analysis that requires special consideration is the analysis of compounds which are prone to a particular form of non-specific binding, namely metal adsorption, where analytes interact and potentially adsorb to metal contained within the chromatographic flow path. For an analysis of compounds which are susceptible to metal adsorption, ideally a system suitability test would be performed to ensure there will not be any sample loss or detrimental peak shape effects resulting from potential analyte-to-metal interactions. To help chromatographers assess system inertness concerns like this, we have developed a method of testing LC systems for metal interactions using adenosine 5'-(α,ß-methylene)diphosphate (AMPcP). This nucleotide analog has been confirmed to have a propensity to adsorb to titanium and stainless-steel frits and is resistant to hydrolysis and stable to long-term storage and repeat use (as is befitting of any reagent proposed for system suitability testing). AMPcP has been used in a flow injection test (no column in-line) to monitor for losses in recovery and peak shape perturbations that can potentially be present in any chromatography system manufactured with one or more metal based components. In this approach, sequential injections of AMPcP were made without a column and various peak attributes were monitored and ultimately correlated to the amount of metal surface area in the flow path. The ability of this method to discriminate between inert chromatographic surfaces versus exposed metal surfaces was verified by comparing peak areas, peak shapes, and injection repeatability for AMPcP using a UHPLC equipped with MP35N metal alloy components versus an equivalent UHPLC equipped with an ethylene bridged hybrid organic-inorganic surface (or so-called hybrid surface technology). Injections of caffeine were also explored to establish a negative control for this system suitability measurement. Caffeine does not interact with metal surfaces and can therefore give an instrument specific representation of peak shape and dispersion as well as an indication of overall mechanical system performance. Additionally, replicate injections of AMPcP and caffeine onto a UHPLC partially configured with hybrid surface technology (HST) readily identified exposed metal surfaces through an increased peak area relative standard deviation as well as a reduction in absolute recovery. Finally, a novel visualization tool was developed to provide an alternative method of determining system inertness without having to perform chromatographic calculations but instead a graphical peak shape comparison between a negative control, caffeine, and the metal sensitive AMPcP test probe.


Subject(s)
Metals , Stainless Steel , Adsorption , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Metals/chemistry , Stainless Steel/chemistry
3.
J Chromatogr A ; 1604: 460487, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31488296

ABSTRACT

The goal of this study was to better understand the possibilities and limitations of modern cation exchange chromatography (CEX) columns for the separation of protein biopharmaceuticals (typically mAbs and related products). Several commercial and research columns consisting of a non-porous polymeric core particle with a thin hydrophilic coating and grafted ion-exchanger sulfonate groups, were compared. The impact of particle size, porosity and packing pressure on the separation of therapeutic proteins was evaluated in a systematic way. First, it was shown that the porosity of modern CEX columns depends on the applied conditions, and lower apparent porosity as well as increased column pressures were observed when using low ionic strength mobile phase (less than 0.01 M NaCl), due to swelling. Column pressure seemed to be dependent on the 1/dp3 to 1/dp5 relationships with particle size, depending on whether 0.3 M NaCl or pure water was used as mobile phase, respectively. Using 5 cm long columns packed with 2 or 2.5 µm particles could easily result in higher than 1000 bar pressure drops when the mobile phase ionic strength is low. Therefore, it is recommended that particle size not be decreased to below 2.5 µm so that technologies can remain compatible with the current state of ultra-high pressure (UHPLC) instrumentation. This recommendation is underscored by the fact that a decrease in particle size does not produce improved separations, since the particles are non-porous (no intra-particle diffusion nor resistance to mass transfer) and that large solutes follow an on-off (bind and elute) type retention mechanism. The only advantage of CEX columns packed with small particles is that they can provide more specific surface area per unit length of column, and thus facilitate higher throughput methods. In conclusion, it appears that there is no need to further decrease the particle size in CEX since decreasing their particle size may result in more drawbacks than benefits.


Subject(s)
Biological Products/isolation & purification , Particle Size , Antibodies, Monoclonal/isolation & purification , Chromatography, High Pressure Liquid/methods , Chromatography, Ion Exchange , Hydrophobic and Hydrophilic Interactions , Permeability , Porosity , Pressure
4.
J Chromatogr A ; 1334: 30-43, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24572546

ABSTRACT

The mass transfer mechanism in three prototype narrow-bore columns (2.1mm×100mm format) packed with 1.6µm superficially porous particles was investigated using different instruments. The heights equivalent to a theoretical plate of three small molecules were measured using a mixture of acetonitrile and water as the eluent. The values reported include the contributions of longitudinal diffusion, eddy dispersion, and the solid-liquid mass transfer resistance. The bulk diffusion coefficients of the analytes were measured using the capillary method, calibrated with thiourea in pure water. The reduced longitudinal diffusion coefficient was determined from the results of a series of peak parking experiments. The solid-liquid mass transfer resistance coefficient and the intra-particle diffusivities of the analytes in the porous region of the particles were estimated from Garnett-Torquato's model of effective diffusion in dense beds packed with core-shell particles. The eddy dispersion term, mostly due to trans-column and border effects, was obtained by subtracting the longitudinal diffusion and the solid-liquid mass transfer resistance terms from the total HETP obtained from the first and second central peak moments calculated by numerical integration (Simpson's approach) after baseline correction and systematic left and right cuts of the peak profiles. The results show that the eddy dispersion controls at least 66% of the overall column HETP for small molecules beyond the optimum velocity. This work illustrates how important it is to use ultra-low dispersive very high pressure liquid chromatography (vHPLC) systems to properly measure and to practically use the high efficiencies of narrow-bore columns packed with 1.6µm core-shell particles since these columns provide intrinsic efficiencies higher than 400,000 plates per meter.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/instrumentation , Diffusion , Kinetics , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...