Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
JBJS Case Connect ; 14(3)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39028835

ABSTRACT

CASE: A 62-year-old woman receiving romosozumab for 3 months underwent extreme lateral interbody fusion (XLIF) for lumbar degenerative spondylolisthesis. From 1 week after surgery, she experienced gradually increasing pain from the right groin to the front of the thigh. Examination revealed ossifying myositis in bilateral psoas major muscles. Etidronate treatment was initiated, improving pain after 4 days. Computed tomography showed lesion disappearance by 3 months after surgery. CONCLUSION: We report a rare case of myositis ossificans in bilateral psoas major muscles following XLIF surgery, possibly influenced by intraoperative manipulation and romosozumab treatment. Etidronate administration may be effective, as with heterotopic ossification.


Subject(s)
Myositis Ossificans , Psoas Muscles , Spinal Fusion , Humans , Female , Middle Aged , Myositis Ossificans/diagnostic imaging , Myositis Ossificans/surgery , Myositis Ossificans/drug therapy , Psoas Muscles/diagnostic imaging , Spondylolisthesis/surgery , Spondylolisthesis/diagnostic imaging , Antibodies, Monoclonal/administration & dosage , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery
2.
Front Surg ; 11: 1370754, 2024.
Article in English | MEDLINE | ID: mdl-38872727

ABSTRACT

Trans-sacral canal plasty (TSCP) is a minimally invasive lumbar spine surgery under local anaesthesia. TSCP is expected to be effective regardless of whether the patient has had previous surgery. However, there are cases in which open revision surgery is required after TSCP. This study aimed to identify risk factors for open revision surgery after TSCP in order to determine surgical indications and limitations. A retrospective case-control study was conducted in patients who underwent TSCP for lumbar spine disease. Data of 112 patients were analysed. During an observation period of 7-23 months, 34 patients (30.4%) required open revision surgery and 78 (69.6%) did not. The following patient background characteristics were investigated: age, sex, body mass index (BMI), diagnosis, history of spine surgery and the institution where the surgery was performed. Comorbidities were scored using the Elixhauser Comorbidity Index. Preoperative imaging parameters were investigated, including the lesion level (L4/5, L5/S1, other), presence of intervertebral instability, dural sac area, presence of bony stenosis and presence of epidural lipoma. Multivariate analysis revealed that intervertebral instability (odds ratio 2.56, confidence interval 1.00-6.51, p = 0.046) and a narrow dural sac area (odds ratio 0.98, confidence interval 0.97-0.99, p = 0.002) were significant risk factors for open revision surgery after TSCP.

3.
Genes Cells ; 29(8): 650-666, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924305

ABSTRACT

Interhomolog recombination in meiosis is mediated by the Dmc1 recombinase. The Mei5-Sae3 complex of Saccharomyces cerevisiae promotes Dmc1 assembly and functions with Dmc1 for homology-mediated repair of meiotic DNA double-strand breaks. How Mei5-Sae3 facilitates Dmc1 assembly remains poorly understood. In this study, we created and characterized several mei5 mutants featuring the amino acid substitutions of basic residues. We found that Arg97 of Mei5, conserved in its ortholog, SFR1 (complex with SWI5), RAD51 mediator, in humans and other organisms, is critical for complex formation with Sae3 for Dmc1 assembly. Moreover, the substitution of either Arg117 or Lys133 with Ala in Mei5 resulted in the production of a C-terminal truncated Mei5 protein during yeast meiosis. Notably, the shorter Mei5-R117A protein was observed in meiotic cells but not in mitotic cells when expressed, suggesting a unique regulation of Dmc1-mediated recombination by posttranslational processing of Mei5-Sae3.


Subject(s)
Cell Cycle Proteins , DNA-Binding Proteins , Meiosis , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Meiosis/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , DNA Mutational Analysis/methods , DNA Breaks, Double-Stranded , Chromosomal Proteins, Non-Histone , Recombinases
4.
Sci Rep ; 14(1): 9550, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664461

ABSTRACT

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


Subject(s)
DNA Breaks, Double-Stranded , Meiosis , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Replication Protein A/metabolism , Replication Protein A/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
5.
Nucleic Acids Res ; 52(10): 5774-5791, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38597669

ABSTRACT

RAD51 filament is crucial for the homology-dependent repair of DNA double-strand breaks and stalled DNA replication fork protection. Positive and negative regulators control RAD51 filament assembly and disassembly. RAD51 is vital for genome integrity but excessive accumulation of RAD51 on chromatin causes genome instability and growth defects. However, the detailed mechanism underlying RAD51 disassembly by negative regulators and the physiological consequence of abnormal RAD51 persistence remain largely unknown. Here, we report the role of the human AAA+ ATPase FIGNL1 in suppressing a novel type of RAD51-mediated genome instability. FIGNL1 knockout human cells were defective in RAD51 dissociation after replication fork restart and accumulated ultra-fine chromosome bridges (UFBs), whose formation depends on RAD51 rather than replication fork stalling. FIGNL1 suppresses homologous recombination intermediate-like UFBs generated between sister chromatids at genomic loci with repeated sequences such as telomeres and centromeres. These data suggest that RAD51 persistence per se induces the formation of unresolved linkage between sister chromatids resulting in catastrophic genome instability. FIGNL1 facilitates post-replicative disassembly of RAD51 filament to suppress abnormal recombination intermediates and UFBs. These findings implicate FIGNL1 as a key factor required for active RAD51 removal after processing of stalled replication forks, which is essential to maintain genome stability.


Subject(s)
Genomic Instability , Rad51 Recombinase , Humans , Chromatids/metabolism , Chromatids/genetics , DNA Replication/genetics , Genomic Instability/genetics , Homologous Recombination/genetics , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Cell Line , Gene Knockout Techniques
6.
Nucleic Acids Res ; 52(7): 3794-3809, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38340339

ABSTRACT

Meiotic recombination is initiated by programmed double-strand breaks (DSBs). Studies in Saccharomyces cerevisiae have shown that, following rapid resection to generate 3' single-stranded DNA (ssDNA) tails, one DSB end engages a homolog partner chromatid and is extended by DNA synthesis, whereas the other end remains associated with its sister. Then, after regulated differentiation into crossover- and noncrossover-fated types, the second DSB end participates in the reaction by strand annealing with the extended first end, along both pathways. This second-end capture is dependent on Rad52, presumably via its known capacity to anneal two ssDNAs. Here, using physical analysis of DNA recombination, we demonstrate that this process is dependent on direct interaction of Rad52 with the ssDNA binding protein, replication protein A (RPA). Furthermore, the absence of this Rad52-RPA joint activity results in a cytologically-prominent RPA spike, which emerges from the homolog axes at sites of crossovers during the pachytene stage of the meiotic prophase. Our findings suggest that this spike represents the DSB end of a broken chromatid caused by either the displaced leading DSB end or the second DSB end, which has been unable to engage with the partner homolog-associated ssDNA. These and other results imply a close correspondence between Rad52-RPA roles in meiotic recombination and mitotic DSB repair.


Subject(s)
Crossing Over, Genetic , DNA Breaks, Double-Stranded , Meiosis , Rad52 DNA Repair and Recombination Protein , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Rad52 DNA Repair and Recombination Protein/metabolism , Rad52 DNA Repair and Recombination Protein/genetics , Replication Protein A/metabolism , Replication Protein A/genetics , Meiosis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Recombination, Genetic , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Homologous Recombination/genetics
7.
Genetics ; 226(3)2024 03 06.
Article in English | MEDLINE | ID: mdl-38124392

ABSTRACT

Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4-Msh5 heterodimer is an evolutionarily conserved mismatch repair-related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4-Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4-Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4-Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Chromosomes , Crossing Over, Genetic , DNA, Cruciform/metabolism , Meiosis/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
DNA Repair (Amst) ; 134: 103613, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142595

ABSTRACT

RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.


Subject(s)
Cell Cycle Proteins , DNA-Binding Proteins , DNA-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Homologous Recombination , Rad51 Recombinase/metabolism , DNA Replication , Meiosis , DNA, Single-Stranded
9.
Pharmacy (Basel) ; 12(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38392922

ABSTRACT

Although prescription review is an important role for pharmacists in anticancer drug therapy, there are no guidelines in Japan that specify what pharmacists should check for in chemotherapy regimens. This prospective multicenter survey aimed to investigate the implementation of chemotherapy regimen checks by pharmacists in general hospitals by focusing on 19 recommended confirmation items designed to enhance chemotherapy safety. This study involved 14 hospitals within the National Hospital Organization in different regions of Japan. The top five cancers in Japan (gastric, colorectal, lung, breast, and gynecological) were targeted and specific chemotherapy regimens were analyzed. This study assessed the amount of time required for regimen checks, the number of confirmation items completed, the number and the content of inquiries raised regarding prescriptions, and the pharmacists' opinions using a questionnaire that had a maximum score of 10 points. Pharmacists checked 345 and 375 chemotherapies of patients in the control group (CG) and recommended items group (RIG), respectively. The mean time periods required for completing a chemotherapy regimen check were 4 min and 14 s (SD ±1 min and 50 s) and 6 min and 18 s (SD, ±1 min and 7 s) in the CG and RIG, respectively. The mean of the recommended items for the CG = 12.4 and for the RIG = 18.6. The items that the pharmacists did not confirm included urine protein (sixty-nine cases, 18.4%), allergy history (four cases, 1%), previous history (two cases, 0.5%), and a previous history of hepatitis B virus (sixty-nine cases, 18.4%). The number of inquiries for a doctor's prescription order was higher in the RIG than in the CG (41 vs. 27 cases). This multicenter survey demonstrated the potential effectiveness of implementing 19 recommended confirmation items in the regimen checks by pharmacists in general hospitals other than cancer treatment collaborative base hospitals.

SELECTION OF CITATIONS
SEARCH DETAIL