Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Geroscience ; 45(6): 3475-3490, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37389698

ABSTRACT

Calorie restriction (CR) can prolong human lifespan, but enforcing long-term CR is difficult. Thus, a drug that reproduces the effects of CR without CR is required. More than 10 drugs have been listed as CR mimetics (CRM), and some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, whereas the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Intriguingly, recent reports have revealed the beneficial effects of CRMs on the body such as improving the host body condition via intestinal bacteria and their metabolites. This beneficial effect of gut microbiota may lead to lifespan extension. Thus, CRMs may have a dual effect on longevity. However, no reports have collectively discussed them as CRMs; hence, our knowledge about CRM and its physiological effects on the host remains fragmentary. This study is the first to present and collectively discuss the accumulative evidence of CRMs improving the gut environments for healthy lifespan extension, after enumerating the latest scientific findings related to the gut microbiome and CR. The conclusion drawn from this discussion is that CRM may partially extend the lifespan through its effect on the gut microbiota. CRMs increase beneficial bacteria abundance by decreasing harmful bacteria rather than increasing the diversity of the microbiome. Thus, the effect of CRMs on the gut could be different from that of conventional prebiotics and seemed similar to that of next-generation prebiotics.


Subject(s)
Gastrointestinal Microbiome , Longevity , Humans , Caloric Restriction , Health Status
2.
J Appl Glycosci (1999) ; 69(4): 97-102, 2022.
Article in English | MEDLINE | ID: mdl-36531693

ABSTRACT

D-Allose, a C3 epimer of D-glucose, has potential to improve human health as a functional food. However, its effect on the intestinal environment remains unknown. Aged humans progressively express changes in the gut, some of which deleteriously affect gastrointestinal health. In this study, we profiled the intestinal microbiome in aged mice and analyzed organic acids produced by bacteria in cecum contents after long-term ingestion of D-allose. D-Allose did not significantly change organic acid concentration. However, long-term ingestion did significantly increase the relative abundance of Actinobacteria and reduce the relative abundance of Proteobacteria. These results suggest that oral D-allose improves the proportion of favorable intestinal flora in aged mice. D-Allose significantly decreased the relative abundance of Lachnospiraceae bacteria, but increased the relative abundance of Bacteroides acidifaciens and Akkermansia muciniphila. Thus, D-allose might serve as a nutraceutical capable of improving the balance of gut microbiome during aging.

3.
Bioorg Med Chem Lett ; 29(17): 2483-2486, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31345631

ABSTRACT

The biological activities of deoxy sugars (deoxy monosaccharides) have remained largely unstudied until recently. We compared the growth inhibition by all 1-deoxyketohexoses using the animal model Caenorhabditis elegans. Among the eight stereoisomers, 1-deoxy-d-allulose (1d-d-Alu) showed particularly strong growth inhibition. The 50% inhibition of growth (GI50) concentration by 1d-d-Alu was estimated to be 5.4 mM, which is approximately 10 times lower than that of d-allulose (52.7 mM), and even lower than that of the potent glycolytic inhibitor, 2-deoxy-d-glucose (19.5 mM), implying that 1d-d-Alu has a strong growth inhibition. In contrast, 5-deoxy- and 6-deoxy-d-allulose showed no growth inhibition of C. elegans. The inhibition by 1d-d-Alu was alleviated by the addition of d-ribose or d-fructose. Our findings suggest that 1d-d-Alu-mediated growth inhibition could be induced by the imbalance in d-ribose metabolism. To our knowledge, this is the first report of biological activity of 1d-d-Alu which may be considered as an antimetabolite drug candidate.


Subject(s)
Caenorhabditis elegans/growth & development , Fructose/chemistry , Aldose-Ketose Isomerases/antagonists & inhibitors , Aldose-Ketose Isomerases/metabolism , Animals , Body Size/drug effects , Caenorhabditis elegans/drug effects , Deoxy Sugars/chemistry , Deoxy Sugars/pharmacology , Deoxyglucose/pharmacology , Drug Synergism , Fructose/pharmacology , Ribose/pharmacology , Stereoisomerism
4.
Biosci Biotechnol Biochem ; 83(12): 2194-2197, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31357905

ABSTRACT

The nematocidal activities of the fatty acid esters of d-allose were examined using the larvae of C. elegans. Among the fatty acid esters, 6-O-octanoyl-d-allose (3) showed significant activity. 6-O-octanoyl-d-glucose (5) showed no activity, indicating that the D-allose moiety is essential for the nematocidal activity of 3. A nonhydrolyzable alkoxy analog 6-O-octyl-d-allose (6) also showed activity equivalent to that of 3.


Subject(s)
Antinematodal Agents/pharmacology , Caenorhabditis elegans/growth & development , Glucose/pharmacology , Larva/drug effects , Animals , Glucose/chemistry
5.
J Appl Glycosci (1999) ; 66(4): 139-142, 2019.
Article in English | MEDLINE | ID: mdl-34429692

ABSTRACT

D-Allose (D-All), C-3 epimer of D-glucose, is a rare sugar known to suppress reactive oxygen species generation and prevent hypertension. We previously reported that D-allulose, a structural isomer of D-All, prolongs the lifespan of the nematode Caenorhabditis elegans. Thus, D-All was predicted to affect longevity. In this study, we provide the first empirical evidence that D-All extends the lifespan of C. elegans. Lifespan assays revealed that a lifespan extension was induced by 28 mM D-All. In particular, a lifespan extension of 23.8 % was achieved (p < 0.0001). We further revealed that the effects of D-All on lifespan were dependent on the insulin gene daf-16 and the longevity gene sir-2.1, indicating a distinct mechanism from those of other hexoses, such as D-allulose, with previously reported antiaging effects.

6.
Nutrients ; 10(12)2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30469486

ABSTRACT

Calorie restriction (CR) can prolong the human lifespan, but enforcing long-term CR is difficult. Therefore, a compound that reproduces the effect of CR without CR is needed. In this review, we summarize the current knowledge on compounds with CR mimetic (CRM) effects. More than 10 compounds have been listed as CRMs, some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, while the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Among these, we focus on upstream-type CRMs and propose their classification as compounds with energy metabolism inhibition effects, particularly glucose metabolism modulation effects. The upstream-type CRMs reviewed include chitosan, acarbose, sodium-glucose cotransporter 2 inhibitors, and hexose analogs such as 2-deoxy-d-glucose, d-glucosamine, and d-allulose, which show antiaging and longevity effects. Finally, we discuss the molecular definition of upstream-type CRMs.


Subject(s)
Acarbose/pharmacology , Aging/drug effects , Blood Glucose/metabolism , Chitosan/pharmacology , Glycolysis/drug effects , Hexoses/pharmacology , Longevity/drug effects , Animals , Caloric Restriction , Deoxyglucose/pharmacology , Glucosamine/pharmacology , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
7.
J Appl Glycosci (1999) ; 65(3): 37-43, 2018.
Article in English | MEDLINE | ID: mdl-34354511

ABSTRACT

Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.

8.
Biochem Biophys Res Commun ; 493(4): 1528-1533, 2017 12 02.
Article in English | MEDLINE | ID: mdl-28965946

ABSTRACT

Dietary restriction (DR) is an effective intervention known to increase lifespan in a wide variety of organisms. DR also delays the onset of aging-associated diseases. DR mimetics, compounds that can mimic the effects of DR, have been intensively explored. d-Allulose (d-Alu), the C3-epimer of d-fructose, is a rare sugar that has various health benefits, including anti-hyperglycemia and anti-obesity effects. Here, we report that d-Alu increased the lifespan of Caenorhabditis elegans both under monoxenic and axenic culture conditions. d-Alu did not further extend the lifespan of the long-lived DR model eat-2 mutant, strongly indicating that the effect is related to DR. However, d-Alu did not reduce the food intake of wild-type C. elegans. To explore the mechanisms of the d-Alu longevity effect, we examined the lifespan of d-Alu-treated mutants deficient for nutrient sensing pathway-related genes daf-16, sir-2.1, aak-2, and skn-1. As a result, d-Alu increased the lifespan of the daf-16, sir-2.1, and skn-1 mutants, but not the aak-2 mutant, indicating that the lifespan extension was dependent on the energy sensor, AMP-activated protein kinase (AMPK). d-Alu also enhanced the mRNA expression and enzyme activities of superoxide dismutase (SOD) and catalase. From these findings, we conclude that d-Alu extends lifespan by increasing oxidative stress resistance through a DR mechanism, making it a candidate DR mimetic.


Subject(s)
Caenorhabditis elegans/drug effects , Caloric Restriction/methods , Fructose/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Catalase/genetics , Catalase/metabolism , Eating/drug effects , Eating/genetics , Eating/physiology , Fructose/chemistry , Genes, Helminth , Longevity/drug effects , Longevity/genetics , Longevity/physiology , Mutation , Oxidative Stress/drug effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Stereoisomerism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
9.
J Agric Food Chem ; 65(13): 2888-2894, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28209058

ABSTRACT

Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p < 0.05). The glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p < 0.05). At 30, 60, and 90 min, the levels of insulin in the RSS group were significantly lower than those in the water group (p < 0.05). The amount of hepatic glycogen was more than 3 times higher in the RSS group than that in the other groups. After glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.


Subject(s)
Blood Glucose/metabolism , Fructose/analysis , Glucokinase/metabolism , High Fructose Corn Syrup/analysis , Insulin Resistance , Liver/enzymology , Animals , Biological Transport , Fructose/metabolism , Glucose Tolerance Test , High Fructose Corn Syrup/metabolism , Insulin/metabolism , Liver/metabolism , Male , Rats , Rats, Wistar
10.
J Biosci Bioeng ; 123(2): 170-176, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27713017

ABSTRACT

An enzyme that catalyzes C-3 epimerization between d-fructose and d-allulose was found in Arthrobacter globiformis strain M30. Arthrobacter species have long been used in the food industry and are well-known for their high degree of safety. The enzyme was purified by ion exchange and hydrophobic interaction chromatographies and characterized as a d-allulose 3-epimerase (d-AE). The molecular weight of the purified enzyme was estimated to be 128 kDa with four identical subunits. The enzyme showed maximal activity and thermostability in the presence of Mg2+. The optimal pH and temperature for enzymatic activity were 7.0-8.0 and 70°C, respectively. The enzyme was immobilized to ion exchange resin whereupon it was stable for longer periods than the free enzyme when stored at below 10°C. In the column reaction, the enzyme activity also maintained stability for more than 4 months. Under these conditions, 215 kg of d-allulose produced per liter immobilized enzyme, and this was the highest production yield of d-allulose reported so far. These highly stable properties suggest that this enzyme represents an ideal candidate for the industrial production of d-allulose.


Subject(s)
Arthrobacter/enzymology , Fructose/metabolism , Racemases and Epimerases/analysis , Racemases and Epimerases/isolation & purification , Racemases and Epimerases/metabolism , Arthrobacter/chemistry , Enzyme Stability , Fructose/biosynthesis , Hydrogen-Ion Concentration , Kinetics , Metabolic Engineering , Molecular Weight , Temperature
11.
Bioorg Med Chem Lett ; 26(3): 726-729, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26791015

ABSTRACT

Biological activities of unusual monosaccharides (rare sugars) have largely remained unstudied until recently. We compared the growth inhibitory effects of aldohexose stereoisomers against the animal model Caenorhabditis elegans cultured in monoxenic conditions with Escherichia coli as food. Among these stereoisomers, the rare sugar D-arabinose (D-Ara) showed particularly strong growth inhibition. The IC50 value for D-Ara was estimated to be 7.5 mM, which surpassed that of the potent glycolytic inhibitor 2-deoxy-D-glucose (19.5 mM) used as a positive control. The inhibitory effect of D-Ara was also observed in animals cultured in axenic conditions using a chemically defined medium; this excluded the possible influence of E. coli. To our knowledge, this is the first report of biological activity of D-Ara. The D-Ara-induced inhibition was recovered by adding either D-ribose or D-fructose, but not D-glucose. These findings suggest that the inhibition could be induced by multiple mechanisms, for example, disturbance of D-ribose and D-fructose metabolism.


Subject(s)
Arabinose/pharmacology , Caenorhabditis elegans/drug effects , Monosaccharides/chemistry , Monosaccharides/pharmacology , Animals , Arabinose/chemistry , Escherichia coli/drug effects , Inhibitory Concentration 50 , Stereoisomerism
12.
Biochem Biophys Res Commun ; 391(4): 1775-9, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20045674

ABSTRACT

Autophagy is a cellular process that nonspecifically degrades cytosolic components and is involved in many cellular responses. We found that amino sugars with a free amino group such as glucosamine, galactosamine and mannosamine induced autophagy via an mTOR-independent pathway. Glucosamine-induced autophagy at concentrations of at least 500 microM to over 40 mM. In the presence of 40 mM glucosamine, autophagy induction was initiated at 6h and reached a plateau at 36 h. Glucosamine-induced autophagy could remove accumulated ubiquitin-conjugated proteins as well as 79-glutamine repeats. Therefore, orally administered glucosamine could contribute to the prevention of neurodegenerative diseases and promotion of antiaging effects.


Subject(s)
Autophagy , Glucosamine/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , COS Cells , Chlorocebus aethiops , Cytosol/metabolism , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...