Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Health ; 52(1): 50, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090702

ABSTRACT

The number of dengue cases has increased dramatically in recent years. In Latin America, the number of cases and deaths in 2023 was the highest ever recorded. We report on a patient who had been infected with dengue virus during his stay in Costa Rica in September 2023, and developed the disease after returning to Japan. Plasma obtained from the patient was used for diagnosis and dengue virus serotyping by real-time PCR. The nucleotide sequence of the envelope region of dengue virus was then determined by the direct sequencing method, and this sequence was used for phylogenetic analyses. The patient was found to be infected with dengue virus type 3 genotype III. The sequence from the present case was more homologous with sequences registered in Florida, USA, associated with travel to Cuba in 2022 than with sequences registered in Costa Rica 10 years ago. The Pan American Health Organization reported that only dengue virus type 1 and 2 cases were reported in Costa Rica in 2019-2021, whereas dengue virus type 3 and 4 cases started being reported in 2022. In 2023, the reported numbers of cases with dengue virus types 3 and 4 exceeded those of dengue virus types 1 and 2. In addition, regional differences in endemic strains have been observed in Costa Rica. Our findings suggest that the dengue virus type 3 that infected the patient was more likely an influx of a strain that had been circulating in Caribbean countries such as Cuba in recent years, rather than a re-emergence of an indigenous virus in Costa Rica. The serotypes of dengue virus prevalent in Costa Rica have been changing since 2022. All four serotypes were prevalent in 2023, with a particularly sharp increase in the number of cases of dengue virus types 3 and 4. Future monitoring and surveillance are essential because changes in endemic serotypes can cause antibody-dependent enhancement, which can lead to severe dengue disease presentations.

2.
Viruses ; 16(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39066210

ABSTRACT

Dengue virus (DENV) is the causative agent of dengue. Although most infected individuals are asymptomatic or present with only mild symptoms, severe manifestations could potentially devastate human populations in tropical and subtropical regions. In hyperendemic regions such as South Asia and Southeast Asia (SEA), all four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) have been prevalent for several decades. Each DENV serotype is further divided into multiple genotypes, reflecting the extensive diversity of DENV. Historically, specific DENV genotypes were associated with particular geographical distributions within endemic regions. However, this epidemiological pattern has changed due to urbanization, globalization, and climate change. This review comprehensively traces the historical and recent genetic epidemiology of DENV in Asia from the first time DENV was identified in the 1950s to the present. We analyzed envelope sequences from a database covering 16 endemic countries across three distinct geographic regions in Asia. These countries included Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka from South Asia; Cambodia, Laos, Myanmar, Thailand, and Vietnam from Mainland SEA; and Indonesia, the Philippines, Malaysia, and Singapore from Maritime SEA. Additionally, we describe the phylogenetic relationships among DENV genotypes within each serotype, along with their geographic distribution, to enhance the understanding of DENV dynamics.


Subject(s)
Dengue Virus , Dengue , Genetic Variation , Genotype , Phylogeny , Dengue Virus/genetics , Dengue Virus/classification , Dengue/epidemiology , Dengue/virology , Humans , Asia/epidemiology , Serogroup , Molecular Epidemiology
3.
Sci Rep ; 14(1): 12713, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830928

ABSTRACT

Despite high vaccination rates globally, countries are still grappling with new COVID infections, and patients diagnosed as mild dying at home during outpatient treatment. Hence, this study aim to identify, then validate, biomarkers that could predict if newly infected COVID-19 patients would subsequently require hospitalization or could recover safely with medication as outpatients. Serum cytokine/chemokine data from 129 COVID-19 patients within 7 days after the onset of symptoms in Bangladesh were used as training data. The majority of patients were infected with the Omicron variant and over 88% were vaccinated. Patients were divided into those with mild symptoms who recovered, and those who deteriorated to moderate or severe illness. Using the Lasso method, 15 predictive markers were identified and used to classify patients into these two groups. The biomarkers were then validated in a cohort of 194 Covid patients in Japan with a predictive accuracy that exceeded 80% for patients infected with Delta and Omicron variants, and 70% for Wuhan and Alpha variants. In an environment of widespread vaccination, these biomarkers could help medical practitioners determine if newly infected COVID-19 patients will improve and can be managed on an out-patient basis, or if they will deteriorate and require hospitalization.


Subject(s)
Biomarkers , COVID-19 , SARS-CoV-2 , Humans , COVID-19/blood , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/virology , Bangladesh/epidemiology , Biomarkers/blood , Male , Female , Middle Aged , Prognosis , SARS-CoV-2/isolation & purification , Adult , Japan/epidemiology , Cohort Studies , Aged , Cytokines/blood , Hospitalization , East Asian People
4.
Vox Sang ; 119(8): 878-882, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38738359

ABSTRACT

BACKGROUND AND OBJECTIVES: In May 2022, the United Kingdom reported the first case of chained transmission of the monkeypox (mpox) virus without any known epidemiological links to west or central Africa. The monthly number of mpox patients currently has passed a peak and is declining globally, and infected patients include both non-vaccinated and vaccinated individuals. Herein, the virus-neutralizing (VN) activity against vaccinia viruses, which are considered to cross-react with the mpox virus, in the intravenous immunoglobulin (IVIG) lots derived from donors, including vaccinated Japanese populations, was evaluated to clarify the status of the Japanese blood donor population. MATERIALS AND METHODS: VN titres against vaccinia and human mpox viruses in IVIG lots derived from donors in Japan and the United States manufactured between 1999 and 2021 and 1995 and 2001, respectively, were evaluated by neutralization testing. RESULTS: VN titres of IVIG derived from donors in Japan and the United States against vaccinia and mpox viruses showed a slowly decreasing trend between 1999 and 2021. CONCLUSION: VN titres are expected to decrease in the future since the percentage of vaccinated donors in the donor population seems to have decreased. Therefore, continuous monitoring of VN titres is required.


Subject(s)
Blood Donors , Immunoglobulins, Intravenous , Monkeypox virus , Humans , Japan , United States , Immunoglobulins, Intravenous/therapeutic use , Antibodies, Neutralizing/blood , Vaccinia virus/immunology , Antibodies, Viral/blood , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/epidemiology , Neutralization Tests , Female , Male
5.
Viruses ; 16(4)2024 04 22.
Article in English | MEDLINE | ID: mdl-38675994

ABSTRACT

We investigated the molecular epidemiology of human norovirus (HuNoV) in all age groups using samples from April 2019 to March 2023, before and after the COVID-19 countermeasures were implemented. GII.2[P16] and GII.4[P31], the prevalent strains in Japan before COVID-19 countermeasures, remained prevalent during the COVID-19 pandemic, except from April to November 2020; in 2021, the prevalence of GII.2[P16] increased among children. Furthermore, there was an increase in the prevalence of GII.4[P16] after December 2022. Phylogenetic analysis of GII.P31 RdRp showed that some strains detected in 2022 belonged to a different cluster of other strains obtained during the present study period, suggesting that HuNoV strains will evolve differently even if they have the same type of RdRp. An analysis of the amino acid sequence of VP1 showed that some antigenic sites of GII.4[P16] were different from those of GII.4[P31]. The present study showed high infectivity of HuNoV despite the COVID-19 countermeasures and revealed changes in the prevalent genotypes and mutations of each genotype. In the future, we will investigate whether GII.4[P16] becomes more prevalent, providing new insights by comparing the new data with those analyzed in the present study.


Subject(s)
COVID-19 , Caliciviridae Infections , Genotype , Norovirus , Phylogeny , Humans , Norovirus/genetics , Norovirus/classification , Japan/epidemiology , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , COVID-19/epidemiology , COVID-19/virology , COVID-19/prevention & control , Child , Child, Preschool , Infant , Adult , Adolescent , Middle Aged , Young Adult , SARS-CoV-2/genetics , SARS-CoV-2/classification , Aged , Female , Male , Prevalence , Molecular Epidemiology , Infant, Newborn , Aged, 80 and over , Gastroenteritis/virology , Gastroenteritis/epidemiology , Gastroenteritis/prevention & control , Feces/virology
6.
PLoS Negl Trop Dis ; 18(1): e0011885, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190404

ABSTRACT

Dengue is a mosquito-borne disease that has spread to over 100 countries. Its symptoms vary from the relatively mild acute febrile illness called dengue fever to the much more severe dengue shock syndrome. Dengue is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. There are four serotypes of DENV, i.e., DENV1 to DENV4, and each serotype is divided into distinct genotypes. Thailand is an endemic area where all four serotypes of DENV co-circulate. Genome sequencing of the DENV2 that was isolated in Thailand in 2016 and 2017 revealed the emergence of the Cosmopolitan genotype and its co-circulation with the Asian-I genotype. However, it was unclear whether different genotypes have different levels of viral replication and pathogenicity. Focus-forming assay (FFA) results showed that clinical isolates of these genotypes differed in focus size and proliferative capacity. Using circular polymerase extension reaction, we generated parental and chimeric viruses with swapped genes between these two DENV2 genotypes, and compared their focus sizes and infectivity titers using FFA. The results showed that the focus size was larger when the structural proteins and/or non-structural NS1-NS2B proteins were derived from the Cosmopolitan virus. The infectious titers were consistent with the focus sizes. Single-round infectious particle assay results confirmed that chimeric viruses with Cosmopolitan type structural proteins, particularly prM/E, had significantly increased luciferase activity. Replicon assay results showed that Cosmopolitan NS1-NS2B proteins had increased reporter gene expression levels. Furthermore, in interferon-receptor knock-out mice, viruses with Cosmopolitan structural and NS1-NS2B proteins had higher titers in the blood, and caused critical disease courses. These results suggested that differences in the sequences within the structural and NS1-NS2B proteins may be responsible for the differences in replication, pathogenicity, and infectivity between the Asian-I and Cosmopolitan viruses.


Subject(s)
Dengue Virus , Dengue , Animals , Mice , Dengue/epidemiology , Virulence , Serogroup , Genotype , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL