Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 12(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35625052

ABSTRACT

Male predominance is a known feature of autism spectrum disorder (ASD). Although ASD mouse models can be useful for elucidating mechanisms underlying abnormal behaviors relevant to human ASD, suitable models to analyze sex differences in ASD pathogenesis remain insufficient. Herein, we used collapsin response mediator protein 4 (Crmp4)-knockout (KO) mice exhibiting ASD-like phenotypes in a male-predominant manner and analyzed ultrasonic vocalizations (USVs) to detect potential differences between genotypes and sexes during the early postnatal period. We recorded isolation-induced USVs emitted from wild-type (WT) and Crmp4-KO littermates and compared the total number of USVs between genotypes and sexes. We classified USVs into 10 types based on internal pitch changes, lengths, and shapes and compared the number of USVs in each type by genotypes and sex. Male Crmp4-KO mice exhibited a reduction in the total number of USVs. Crmp4-KO decreased the number of USVs in 7 out of 10 USV types, and male KO mice exhibited a greater reduction than females in 3 of the 7 types. This study offers a suitable ASD animal model and tool for assessing sex-based communication deficits during the early postnatal period, both of which would be valuable for elucidating the underlying mechanism.

2.
Sci Rep ; 12(1): 2450, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165334

ABSTRACT

The neuroplastic mechanism of sex reversal in the fish brain remains unclear due to the difficulty in identifying the key neurons involved. Mozambique tilapia show different reproductive behaviours between sexes; males build circular breeding nests while females hold and brood fertilized eggs in their mouth. In tilapia, gonadotropin-releasing hormone 3 (GnRH3) neurons, located in the terminal nerve, regulate male reproductive behaviour. Mature males have more GnRH3 neurons than mature females, and these neurons have been indicated to play a key role in the androgen-induced female-to-male sex reversal of the brain. We aimed to elucidate the signalling pathway involved in the androgen-induced increase in GnRH3 neurons in mature female tilapia. Applying inhibitors to organotypic cultures of brain slices, we showed that the insulin-like growth factor (IGF)-1 receptor (IGF-1R)/PI3K/AKT/mTOR pathway contributed to the androgen-induced increase in GnRH3 neurons. The involvement of IGF-1 and IGF-1R in 11-ketotestosterone (11-KT)-induced development of GnRH3 neurons was supported by an increase in Igf-1 mRNA shortly after 11-KT treatment, the increase of GnRH3 neurons after IGF-1 treatment and the expression of IGF-1R in GnRH3 neurons. Our findings highlight the involvement of IGF-1 and its downstream signalling pathway in the sex reversal of the tilapia brain.


Subject(s)
Brain/metabolism , Gonadotropin-Releasing Hormone/metabolism , Methyltestosterone/pharmacology , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pyrrolidonecarboxylic Acid/analogs & derivatives , Receptor, IGF Type 1/metabolism , Reproduction/drug effects , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Brain/drug effects , Female , Insulin-Like Growth Factor I/pharmacology , Male , Neurons/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Testosterone/analogs & derivatives , Testosterone/pharmacology , Tilapia
SELECTION OF CITATIONS
SEARCH DETAIL
...