Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Schizophr Res Cogn ; 12: 20-28, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29552509

ABSTRACT

BACKGROUND: The lack of efficacy of pharmacological treatments for cognitive and negative symptoms in schizophrenia highlights the need for new interventions. We investigated the effects of tDCS on working memory and negative symptoms in patients with schizophrenia. METHOD: Double-blinded, randomized, sham-controlled clinical trial, investigating the effects of 10 sessions of tDCS in schizophrenia subjects. Stimulation used 2 mA, for 20 min, with electrodes of 25 cm2 wrapped in cotton material soaked in saline solution. Anode was positioned over the left DLPFC and the cathode in the contralateral area. Twenty-four participants were assessed at baseline, after intervention and in a three-months follow-up. The primary outcome was the working memory score from MATRICS and the secondary outcome the negative score from PANSS. Data were analyzed using generalized estimating equations. RESULTS: We did not find group ∗ time interaction for the working memory (p = 0.720) score or any other cognitive variable (p > 0.05). We found a significant group ∗ time interaction for PANSS negative (p < 0.001, d = 0.23, CI.95 = -0.59-1.02), general (p = 0.011) and total scores (p < 0.001). Exploratory analysis of PANSS 5 factors suggests tDCS effect on PANSS negative (p = 0.012), cognitive (p = 0.016) and depression factors (p = 0.029). CONCLUSION: The results from this trial highlight the therapeutic effects of tDCS for treatment of persistent symptoms in schizophrenia, with reduction of negative symptoms. We were not able to confirm the superiority of active tDCS over sham to improve working memory performance. Larger sample size studies are needed to confirm these findings.

2.
Eur Neuropsychopharmacol ; 23(11): 1530-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23615118

ABSTRACT

Transcranial direct current stimulation (tDCS) has been intensively investigated as a non-pharmacological treatment for major depressive disorder (MDD). While many studies have examined the genetic predictors of antidepressant medications, this issue remains to be investigated for tDCS. In the current study, we evaluated whether the BDNF Val66Met and the 5-HTT (5-HTTLPR) polymorphisms were associated with tDCS antidepressant response. We used data from a factorial trial that evaluated the efficacy of tDCS and sertraline and enrolled 120 moderate-to-severe, antidepressant-free participants. In the present study, we used analyses of variance to evaluate whether the BDNF (Val/Val vs. Met-carries) and 5-HTTLPR alleles (long/long vs short-carriers) were predictors of tDCS (active/sham) and sertraline (sertraline/placebo) response. Analyses were conducted on the polymorphisms separately and also on their interaction. Genotype frequencies were in Hardy-Weinberg equilibrium. BDNF polymorphism was not associated with treatment response. We found that 5-HTTLPR predicted tDCS effects as long/long homozygotes displayed a larger improvement comparing active vs. sham tDCS, while short-allele carriers did not. A dose-response relationship between active-sham differences with the long allele was also suggested. These results strengthen the role of the serotonergic system in the tDCS antidepressant effects and expand previous findings that reported that tDCS mechanisms of action partially involve serotonergic receptors. Therefore, we hypothesize that tDCS is a neuromodulation technique that acts over depression through the modulation of serotonergic system and that tDCS "top-down" antidepressant effects might not be optimal in brain networks with a hyperactive amygdala inducing bottom-up effects, such as occurs in short-carriers.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Electric Stimulation Therapy , Serotonergic Neurons/drug effects , Serotonin Plasma Membrane Transport Proteins/genetics , Sertraline/therapeutic use , Adolescent , Adult , Aged , Alleles , Combined Modality Therapy/adverse effects , Double-Blind Method , Epistasis, Genetic/genetics , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Serotonergic Neurons/physiology , Serotonin/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL