Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(44): 27481-27492, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33060291

ABSTRACT

The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.


Subject(s)
Cnidarian Venoms/genetics , Gene Duplication , Nervous System/metabolism , Neuropeptides/genetics , Sea Anemones/physiology , Animals , Cnidarian Venoms/metabolism , Evolution, Molecular , Neuropeptides/metabolism , Phylogeny
2.
Mol Biol Evol ; 36(9): 2001-2012, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31134275

ABSTRACT

The cnidarian Nematostella vectensis has become an established lab model, providing unique opportunities for venom evolution research. The Nematostella venom system is multimodal: involving both nematocytes and ectodermal gland cells, which produce a toxin mixture whose composition changes throughout the life cycle. Additionally, their modes of interaction with predators and prey vary between eggs, larvae, and adults, which is likely shaped by the dynamics of the venom system. Nv1 is a major component of adult venom, with activity against arthropods (through specific inhibition of sodium channel inactivation) and fish. Nv1 is encoded by a cluster of at least 12 nearly identical genes that were proposed to be undergoing concerted evolution. Surprisingly, we found that Nematostella venom includes several Nv1 paralogs escaping a pattern of general concerted evolution, despite belonging to the Nv1-like family. Here, we show two of these new toxins, Nv4 and Nv5, are lethal for zebrafish larvae but harmless to arthropods, unlike Nv1. Furthermore, unlike Nv1, the newly identified toxins are expressed in early life stages. Using transgenesis and immunostaining, we demonstrate that Nv4 and Nv5 are localized to ectodermal gland cells in larvae. The evolution of Nv4 and Nv5 can be described either as neofunctionalization or as subfunctionalization. Additionally, the Nv1-like family includes several pseudogenes being an example of nonfunctionalization and venom evolution through birth-and-death mechanism. Our findings reveal the evolutionary history for a toxin radiation and point toward the ecological function of the novel toxins constituting a complex cnidarian venom.


Subject(s)
Cnidarian Venoms/genetics , Evolution, Molecular , Sea Anemones/genetics , Amino Acid Sequence , Animals , Arthropods , Larva , Nematocyst , Zebrafish
3.
Oncogene ; 35(20): 2675-80, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26119932

ABSTRACT

It is well known that specific signal transduction inhibitors rarely suffice as anti-cancer agents. In most cases, tumors possess primary drug resistance due to their inherent heterogeneity, or acquire drug resistance due to genomic instability and acquisition of mutations. Here we expand our previous study of the novel compound, NT157, and show that it acts as a dual-targeting agent that invokes the blockage of two signal transduction pathways that are central to the development and maintenance of multiple human cancers. We show that NT157 targets not only IGF1R-IRS1/2, as previously reported, but also the Stat3 signaling pathway and demonstrates remarkable anti-cancer characteristics in A375 human melanoma cells and in a metastatic melanoma model in mice.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Molecular Targeted Therapy/methods , Pyrogallol/analogs & derivatives , Receptors, Somatomedin/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Sulfonamides/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Discovery , Humans , Melanoma/pathology , Neoplasm Invasiveness , Pyrogallol/pharmacology , Pyrogallol/therapeutic use , Receptor, IGF Type 1 , Sulfonamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...