Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Narra J ; 4(1): e754, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798851

ABSTRACT

It is widely acknowledged that smoking exacerbates the severity of infectious diseases. A presumed mechanism involves the damage inflicted by tobacco smoke on the organs of host organisms. In this study, an alternative hypothesis was explored: smoking enhances the virulence of bacteria. This possibility was investigated using Escherichia coli as the model bacteria and Drosophila as the host organism. Our inquiry focused on the potential gene expression changes in E. coli subsequent to exposure to tobacco smoke extracts. Analysis of the transcription promoter activity of genes encoding proteins within the E. coli two-component system, a regulatory machinery governing gene expression, revealed the suppression of thirteen out of 23 promoters in response to tobacco smoke extracts. Subsequently, Drosophila was infected with E. coli exposed to tobacco smoke extracts or left untreated. Interestingly, there were no significant differences observed in the survival periods of Drosophila following infection with E. coli, whether treated or untreated with tobacco smoke extracts. Contrary to the initial hypothesis, the findings suggest that while tobacco smoke extracts alter gene expression in E. coli, these changes do not appear to impact bacterial virulence. Although this study has illuminated the influence of tobacco smoke extracts on the gene expression of E. coli, further analyses are necessary to elucidate the implications of these changes. Nevertheless, the results imply that smoking affects not only host organisms but may also exert influence on invading bacteria.


Subject(s)
Escherichia coli , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/drug effects , Animals , Virulence/genetics , Nicotiana/adverse effects , Nicotiana/microbiology , Drosophila/microbiology , Gene Expression Regulation, Bacterial/drug effects , Smoke/adverse effects , Virulence Factors/genetics
2.
Narra J ; 4(1): e743, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798865

ABSTRACT

Aging is commonly characterized by a decline in the physiological functioning of the body organs, with one hallmark being the impairment of intestinal function, leading to increased intestinal permeability known as leaky gut. The aim of this study was to investigate the potential of curcumin to prevent the development of leaky gut in Drosophila melanogaster utilizing the smurf fly method. In this study, flies aged 3-5 days underwent a 10-day dextran sulfate sodium (DSS) treatment to induce intestinal permeability, followed by a smurf assay using brilliant blue dye and locomotor testing the next day. Flies displaying the smurf phenotype were divided into four groups: untreated control and curcumin-treated (10 µM, 50 µM, and 250 µM). After 21 days of treatment, flies were reassessed for the smurf phenotype and underwent locomotor testing. On day 23, flies were subjected to RT-qPCR analysis. By inducing increased intestinal permeability through the administration of DSS, a higher proportion of flies exhibiting the smurf phenotype and a reduced survival rate in the DSS-treated group were observed. Such phenotypes were reversed, decreased number of flies displaying the smurf phenotype and improved fly survival, upon the incorporation of curcumin in the fly food at concentrations of 10, 50, and 250 µM. Subsequent molecular analysis revealed upregulated expression of sod1, cat, and pepck genes, while no significant changes were observed in the expression of sod2, indy, and srl genes following treatment with curcumin at high concentration. Overall, our findings provide insight into the potential effect of curcumin to alleviate the phenotypical features associated with DSS-induced leaky gut, possibly via the selective regulation of aging-related genes.


Subject(s)
Curcumin , Drosophila melanogaster , Permeability , Animals , Curcumin/pharmacology , Drosophila melanogaster/drug effects , Permeability/drug effects , Dextran Sulfate , Phenotype
3.
iScience ; 27(5): 109650, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38650989

ABSTRACT

Microbial ecosystems experience spatial and nutrient restrictions leading to the coevolution of cooperation and competition among cohabiting species. To increase their fitness for survival, bacteria exploit machinery to antagonizing rival species upon close contact. As such, the bacterial type VI secretion system (T6SS) nanomachinery, typically expressed by pathobionts, can transport proteins directly into eukaryotic or prokaryotic cells, consequently killing cohabiting competitors. Here, we demonstrate for the first time that oral symbiont Aggregatibacter aphrophilus possesses a T6SS and can eliminate its close relative oral pathobiont Aggregatibacter actinomycetemcomitans using its T6SS. These findings bring nearer the anti-bacterial prospects of symbionts against cohabiting pathobionts while introducing the presence of an active T6SS in the oral cavity.

4.
Biochim Biophys Acta Gen Subj ; 1868(4): 130565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38244702

ABSTRACT

N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.


Subject(s)
Biological Phenomena , Polysaccharides , Cricetinae , Animals , Humans , Phosphorylation , Glycosylation , CHO Cells , Cricetulus , Polysaccharides/metabolism , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism
5.
Subcell Biochem ; 106: 77-112, 2023.
Article in English | MEDLINE | ID: mdl-38159224

ABSTRACT

Viruses are infectious entities that make use of the replication machinery of their hosts to produce more progenies, causing disease and sometimes death. To counter viral infection, metazoan hosts are equipped with various defense mechanisms, from the rapid-evoking innate immune responses to the most advanced adaptive immune responses. Previous research demonstrated that cells in fruit flies and mice infected with Drosophila C virus and influenza, respectively, undergo apoptosis, which triggers the engulfment of apoptotic virus-infected cells by phagocytes. This process involves the recognition of eat-me signals on the surface of virus-infected cells by receptors of specialized phagocytes, such as macrophages and neutrophils in mice and hemocytes in fruit flies, to facilitate the phagocytic elimination of virus-infected cells. Inhibition of phagocytosis led to severe pathologies and death in both species, indicating that apoptosis-dependent phagocytosis of virus-infected cells is a conserved antiviral mechanism in multicellular organisms. Indeed, our understanding of the mechanisms underlying apoptosis-dependent phagocytosis of virus-infected cells has shed a new perspective on how hosts defend themselves against viral infection. This chapter explores the mechanisms of this process and its potential for developing new treatments for viral diseases.


Subject(s)
Phagocytosis , Virus Diseases , Animals , Mice , Phagocytosis/physiology , Phagocytes/physiology , Immunity, Innate , Apoptosis/physiology , Antiviral Agents
6.
Genes Cells ; 25(10): 675-684, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32865275

ABSTRACT

Immunity is considered to be involved in the prevention of cancer. Although both humoral and cellular immune reactions may participate, underlying mechanisms have yet to be clarified. The present study was conducted to clarify this issue using a Drosophila model, in which neoplastic transformation was induced through the simultaneous inhibition of cell-cycle checkpoints and apoptosis. We first determined the location of hemocytes, blood cells of Drosophila playing a role of immune cells, in neoplasia-induced and normal larvae, but there was no significant difference between the two groups. When gene expression pattern in larval hemocytes was determined, the expression of immunity-related genes including those necessary for phagocytosis was reduced in the neoplasia model. We then asked the involvement of phagocytosis in the prevention of neoplasia examining animals where the expression of engulfment receptors instead of apoptosis was retarded. We found that the inhibition of engulfment receptor expression augmented the occurrence of neoplasia induced by a defect in cell-cycle checkpoints. This suggested a role for phagocytosis in the prevention of neoplastic transformation in Drosophila.


Subject(s)
Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Phagocytosis/immunology , Animals , Apoptosis/immunology , Cell Line , Cell Transformation, Neoplastic/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Female , Hemocytes/cytology , Hemocytes/immunology , Hemocytes/metabolism , Larva/metabolism , Male , Neoplasms/genetics , Neoplasms/immunology , Phagocytosis/genetics , Phagocytosis/physiology
7.
Biol Pharm Bull ; 40(11): 1819-1827, 2017.
Article in English | MEDLINE | ID: mdl-29093328

ABSTRACT

Cells that have become unwanted by the body need to be selectively, rapidly, and safely removed. The removal of these cells is achieved by apoptosis-dependent phagocytosis: unwanted cells are induced to undergo apoptosis and given susceptibility to phagocytosis. Phagocytes recognize these cells using engulfment receptors that bind substances expressed on the surface of target cells during the apoptotic process. The phagocytic elimination of cells undergoing apoptosis is a mechanism that is conserved among multicellular organisms. Malfunctions in this process may lead to structural and functional defects in morphogenesis and tissue homeostasis. Therefore, molecules involved in this phenomenon may be targeted in medical treatments. The mechanisms responsible for the apoptosis-dependent phagocytosis of unwanted cells as well as its physiological and pathological consequences are described herein.


Subject(s)
Apoptosis/physiology , Phagocytes/physiology , Phagocytosis/physiology , Signal Transduction/physiology , Actin Cytoskeleton/physiology , Animals , Antigen Presentation/physiology , Humans , Morphogenesis/physiology , Phosphatidylserines/physiology
8.
Front Immunol ; 8: 1220, 2017.
Article in English | MEDLINE | ID: mdl-29033939

ABSTRACT

Viruses are infectious entities that hijack host replication machineries to produce their progeny, resulting, in most cases, in disease and, sometimes, in death in infected host organisms. Hosts are equipped with an array of defense mechanisms that span from innate to adaptive as well as from humoral to cellular immune responses. We previously demonstrated that mouse cells underwent apoptosis in response to influenza virus infection. These apoptotic, virus-infected cells were then targeted for engulfment by macrophages and neutrophils. We more recently reported similar findings in the fruit fly Drosophila melanogaster, which lacks adaptive immunity, after an infection with Drosophila C virus. In these experiments, the inhibition of phagocytosis led to severe influenza pathologies in mice and early death in Drosophila. Therefore, the induction of apoptosis and subsequent phagocytosis of virus-infected cells appear to be an antiviral innate immune mechanism that is conserved among multicellular organisms. We herein discuss the underlying mechanisms and significance of the apoptosis-dependent phagocytosis of virus-infected cells. Investigations on the molecular and cellular features responsible for this underrepresented virus-host interaction may provide a promising avenue for the discovery of novel substances that are targeted in medical treatments against virus-induced intractable diseases.

9.
J Biol Chem ; 292(19): 8059-8072, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28325838

ABSTRACT

The phagocytic elimination of cells undergoing apoptosis is an evolutionarily conserved innate immune mechanism for eliminating unnecessary cells. Previous studies showed an increase in the level of engulfment receptors in phagocytes after the phagocytosis of apoptotic cells, which leads to the enhancement of their phagocytic activity. However, precise mechanisms underlying this phenomenon require further clarification. We found that the pre-incubation of a Drosophila phagocyte cell line with the fragments of apoptotic cells enhanced the subsequent phagocytosis of apoptotic cells, accompanied by an augmented expression of the engulfment receptors Draper and integrin αPS3. The DNA-binding activity of the transcription repressor Tailless was transiently raised in those phagocytes, depending on two partially overlapping signal-transduction pathways for the induction of phagocytosis as well as the occurrence of engulfment. The RNAi knockdown of tailless in phagocytes abrogated the enhancement of both phagocytosis and engulfment receptor expression. Furthermore, the hemocyte-specific RNAi of tailless reduced apoptotic cell clearance in Drosophila embryos. Taken together, we propose the following mechanism for the activation of Drosophila phagocytes after an encounter with apoptotic cells: two partially overlapping signal-transduction pathways for phagocytosis are initiated; transcription repressor Tailless is activated; expression of engulfment receptors is stimulated; and phagocytic activity is enhanced. This phenomenon most likely ensures the phagocytic elimination of apoptotic cells by stimulated phagocytes and is thus considered as a mechanism to prime phagocytes in innate immunity.


Subject(s)
Apoptosis , Phagocytes/cytology , Signal Transduction , Animals , Cell Line , Cell Nucleus/metabolism , Cycloheximide/chemistry , Cytoskeletal Proteins/metabolism , DNA/analysis , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Hemocytes/cytology , Immunity, Innate , Integrin alpha Chains/metabolism , Membrane Proteins/metabolism , Oncogene Protein v-crk/metabolism , Phagocytosis , RNA Interference , Repressor Proteins/metabolism
10.
Drug Discov Ther ; 11(6): 329-335, 2017.
Article in English | MEDLINE | ID: mdl-29332891

ABSTRACT

Phytohemagglutinin (PHA) isolated from the family of Phaseolus vulgaris beans is a promising agent against viral infection; however, it has not yet been demonstrated in vivo. We herein investigated this issue using Drosophila as a host. Adult flies were fed lectin approximately 12 h before they were subjected to a systemic viral infection. After a fatal infection with Drosophila C virus, death was delayed and survival was longer in flies fed PHA-P, a mixture of L4, L3E1, and L2E2, than in control unfed flies. We then examined PHA-L4, anticipating subunit L as the active form, and confirmed the protective effects of this lectin at markedly lower concentrations than PHA-P. In both experiments, lectin feeding reduced the viral load prior to the onset of fly death. Furthermore, we found a dramatic increase in the levels of the mRNAs of phagocytosis receptors in flies after feeding with PHA-L4 while a change in the levels of the mRNAs of antimicrobial peptides was marginal. We concluded that P. vulgaris PHA protects Drosophila against viral infection by augmenting the level of host immunity.


Subject(s)
Dicistroviridae , Drosophila/drug effects , Mitogens/pharmacology , Phytohemagglutinins/pharmacology , Survival Rate , Virus Diseases/virology , Animals , Drosophila/genetics , Drosophila/virology , Phaseolus , RNA, Messenger/drug effects , RNA, Messenger/metabolism , Receptors, Immunologic/drug effects , Receptors, Immunologic/genetics , Viral Load/drug effects
11.
J Immunol ; 197(4): 1298-307, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27357148

ABSTRACT

An RNA chaperone of Escherichia coli, called host factor required for phage Qß RNA replication (Hfq), forms a complex with small noncoding RNAs to facilitate their binding to target mRNA for the alteration of translation efficiency and stability. Although the role of Hfq in the virulence and drug resistance of bacteria has been suggested, how this RNA chaperone controls the infectious state remains unknown. In the present study, we addressed this issue using Drosophila melanogaster as a host for bacterial infection. In an assay for abdominal infection using adult flies, an E. coli strain with mutation in hfq was eliminated earlier, whereas flies survived longer compared with infection with a parental strain. The same was true with flies deficient in humoral responses, but the mutant phenotypes were not observed when a fly line with impaired hemocyte phagocytosis was infected. The results from an assay for phagocytosis in vitro revealed that Hfq inhibits the killing of E. coli by Drosophila phagocytes after engulfment. Furthermore, Hfq seemed to exert this action partly through enhancing the expression of σ(38), a stress-responsive σ factor that was previously shown to be involved in the inhibition of phagocytic killing of E. coli, by a posttranscriptional mechanism. Our study indicates that the RNA chaperone Hfq contributes to the persistent infection of E. coli by maintaining the expression of bacterial genes, including one coding for σ(38), that help bacteria evade host immunity.


Subject(s)
Drosophila/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli/pathogenicity , Gene Expression Regulation, Bacterial/physiology , Host Factor 1 Protein/metabolism , Animals , Blotting, Western , Disease Models, Animal , Hemocytes/microbiology , Phagocytosis/physiology , Reverse Transcriptase Polymerase Chain Reaction , Virulence/physiology
12.
J Immunol ; 195(12): 5696-706, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26546607

ABSTRACT

We investigated whether phagocytosis participates in the protection of insects from viral infection using the natural host-virus interaction between Drosophila melanogaster and Drosophila C virus (DCV). Drosophila S2 cells were induced to undergo apoptotic cell death upon DCV infection. However, UV-inactivated virus was unable to cause apoptosis, indicating the need for productive infection for apoptosis induction. S2 cells became susceptible to phagocytosis by hemocyte-derived l(2)mbn cells after viral infection, and the presence of phagocytes in S2 cell cultures reduced viral proliferation. Phagocytosis depended, in part, on caspase activity in S2 cells, as well as the engulfment receptors Draper and integrin ßν in phagocytes. To validate the in vivo situation, adult flies were abdominally infected with DCV, followed by the analysis of fly death and viral growth. DCV infection killed flies in a dose-responding manner, and the activation of effector caspases was evident, as revealed by the cleavage of a target protein ectopically expressed in flies. Furthermore, hemocytes isolated from infected flies contained DCV-infected cells, and preinjection of latex beads to inhibit the phagocytic activity of hemocytes accelerated fly death after viral infection. Likewise, viral virulence was exaggerated in flies lacking the engulfment receptors, and was accompanied by the augmented proliferation of virus. Finally, phagocytosis of DCV-infected cells in vitro was inhibited by phosphatidylserine-containing liposome, and virus-infected flies died early when a phosphatidylserine-binding protein was ectopically expressed. Collectively, our study demonstrates that the apoptosis-dependent, phosphatidylserine-mediated phagocytosis of virus-infected cells plays an important role in innate immune responses against viral infection in Drosophila.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Hemocytes/physiology , Insect Viruses/physiology , Integrin beta Chains/metabolism , Membrane Proteins/metabolism , Phagocytes/physiology , Virus Diseases/immunology , Animals , Apoptosis/radiation effects , Caspases, Effector/genetics , Caspases, Effector/metabolism , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster/virology , Hemocytes/virology , Immunity, Innate , Insect Viruses/pathogenicity , Insect Viruses/radiation effects , Integrin beta Chains/genetics , Membrane Proteins/genetics , Mutation/genetics , Phagocytes/virology , Phagocytosis/genetics , Phosphatidylserines/metabolism , Ultraviolet Rays , Virulence
13.
J Biochem ; 157(6): 507-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25577644

ABSTRACT

Interaction between the host and pathogen determines the fate of both organisms during the infectious state. The host is equipped with a battery of immune reactions, while the pathogen displays a variety of mechanisms to compromise host immunity. Although bacteria alter their pattern of gene expression in host organisms, studies to elucidate the mechanism behind this are only in their infancy. We here examined the possibility that host immune proteins directly participate in the change of gene expression in bacteria. Escherichia coli was treated with a mixture of the extracellular region of peptidoglycan recognition protein (PGRP)-LC and the antimicrobial peptide attacin of Drosophila, and subjected to DNA microarray analysis for mRNA repertoire. We identified 133 annotated genes whose mRNA increased after the treatment, and at least four of them were induced in response to PGRP-LC. One such gene, lipoprotein-encoding nlpI, showed a transient increase of mRNA in adult flies depending on PGRP-LC but not PGRP-LE. NlpI-lacking E. coli had a lowered growth rate and/or viability in flies than the parental strain. These results suggest that a host immune receptor triggers a change of gene expression in bacteria simultaneously with their recognition and induction of immune responses.


Subject(s)
Carrier Proteins/physiology , Drosophila melanogaster/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Genes, Bacterial , Animals , RNA, Messenger/genetics
14.
J Immunol ; 192(2): 666-75, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24337747

ABSTRACT

Bacteria adapt themselves to host environments by altering the pattern of gene expression. The promoter-recognizing subunit σ of bacterial RNA polymerase plays a major role in the selection of genes to be transcribed. Among seven σ factors of Escherichia coli, σ(38) is responsible for the transcription of genes in the stationary phase and under stressful conditions. We found a transient increase of σ(38) when E. coli was injected into the hemocoel of Drosophila melanogaster. The loss of σ(38) made E. coli rapidly eliminated in flies, and flies infected with σ(38)-lacking E. coli stayed alive longer than those infected with the parental strain. This was also observed in fly lines defective in humoral immune responses, but not in flies in which phagocytosis was impaired. The lack of σ(38) did not influence the susceptibility of E. coli to phagocytosis, but made them vulnerable to killing after engulfment. The changes caused by the loss of σ(38) were recovered by the forced expression of σ(38)-encoding rpoS as well as σ(38)-regulated katE and katG coding for enzymes that detoxify reactive oxygen species. These results collectively suggested that σ(38) contributes to the prolonged survival of E. coli in Drosophila by inducing the production of enzymes that protect bacteria from killing in phagocytes. Considering the similarity in the mechanism of innate immunity against invading bacteria between fruit flies and humans, the products of these genes could be new targets for the development of more effective antibacterial remedies.


Subject(s)
Drosophila melanogaster/microbiology , Escherichia coli/growth & development , Escherichia coli/genetics , Sigma Factor/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Catalase/genetics , Catalase/immunology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/immunology , Drosophila melanogaster/immunology , Escherichia coli/immunology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/immunology , Gene Expression Regulation, Bacterial/genetics , Gene Expression Regulation, Bacterial/immunology , Immunity, Humoral/genetics , Immunity, Humoral/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Male , Phagocytosis/genetics , Phagocytosis/immunology , Reactive Oxygen Species/immunology , Sigma Factor/immunology
15.
Biochem Biophys Res Commun ; 438(2): 306-11, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23886953

ABSTRACT

Bacteria adapt to environmental changes by altering gene expression patterns with the aid of signal transduction machinery called the two-component regulatory system (TCS), which consists of two protein components, a sensor kinase and response regulator. We examined the role of the TCS in bacterial adaptation to host environments using genetically tractable organisms, Escherichia coli as a pathogen and Drosophila melanogaster as a host. To determine the strength of the transcription promoters of TCS-encoding genes in Drosophila, adult flies were infected with a series of E. coli strains that expressed GFP driven by the promoters of genes coding for 27 sensor kinases and 32 response regulators of E. coli TCS followed by the measurement of fluorescence intensities. We further analyzed EnvZ-OmpR among the TCS encoded by genes having stronger promoters. A mutant E. coli strain lacking EnvZ-OmpR had a higher pathogenic effect on fly survival than that of the parental strain, and the forced expression of envZ and ompR in the mutant strain lowered its pathogenicity. The lack of EnvZ-OmpR did not affect the growth of E. coli in a culture medium as well as the level of colony-formable E. coli in flies. An increase in E. coli virulence with the loss of EnvZ-OmpR was observed in flies defective in an Imd-mediated humoral response, and both the mutant and parental strains were equally engulfed by hemocytes in vitro. These results suggest that EnvZ-OmpR mitigated the virulence of E. coli in Drosophila by a mechanism not accompanied by a change of bacterial burden. This behavior of E. coli is most likely a bacterial strategy to achieve persistent infection.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Drosophila melanogaster/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli/pathogenicity , Gene Expression Regulation, Bacterial , Multienzyme Complexes/metabolism , Trans-Activators/metabolism , Animals , Escherichia coli/genetics , Green Fluorescent Proteins/metabolism , Hemocytes/microbiology , Male , Phagocytosis , Promoter Regions, Genetic , Signal Transduction , Virulence
16.
Drug Discov Ther ; 7(2): 73-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23715505

ABSTRACT

Sertoli cells, the sole somatic cell type in the seminiferous epithelium, play an essential role in spermatogenesis and spermiogenesis by nursing germ cells for their survival and differentiation as well as physically inhibiting the entrance of harmful substances into the seminiferous tubules. Sertoli cells possess the characteristics of immune cells; they express pattern recognition receptors, secrete antimicrobial proteins, and engulf dead or dying cells. In this study, we determined the mechanism by which Sertoli cells engulf and kill bacteria compared to that of macrophages. When the primary cultured Sertoli cells of rats were incubated with Staphylococcus aureus, they produced the mRNA of neutrophil protein 3, an antimicrobial peptide of the α-defensin family, but not superoxide or nitric oxide, in contrast to mouse peritoneal macrophages. Sertoli cells effectively phagocytosed S. aureus in a manner that was accompanied by cytoskeleton rearrangement and dependent on phosphatidylinositol 3-kinase. Engulfed bacteria appeared to stay alive in Sertoli cells, while they were rapidly killed in macrophages. These results collectively suggest that Sertoli cells eliminate bacteria that have invaded the seminiferous epithelium without evoking inflammation, unlike macrophages.


Subject(s)
Macrophages, Peritoneal/physiology , Phagocytosis/physiology , RNA, Messenger/analysis , Sertoli Cells/physiology , alpha-Defensins/metabolism , Animals , Cells, Cultured , Immunity, Innate/immunology , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Male , Mice , Nitric Oxide/metabolism , Rats , Sertoli Cells/immunology , Sertoli Cells/metabolism , Staphylococcus aureus , Superoxides/metabolism , alpha-Defensins/genetics
17.
J Biol Chem ; 288(15): 10374-80, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23426364

ABSTRACT

Integrins exert a variety of cellular functions as heterodimers of two transmembrane subunits named α and ß. Integrin ßν, a ß-subunit of Drosophila integrin, is involved in the phagocytosis of apoptotic cells and bacteria. Here, we searched for an α-subunit that forms a complex and cooperates with ßν. Examinations of RNAi-treated animals suggested that αPS3, but not any of four other α-subunits, is required for the effective phagocytosis of apoptotic cells in Drosophila embryos. The mutation of αPS3-encoding scb, deficiency, insertion of P-element, or alteration of nucleotide sequences, brought about a reduction in the level of phagocytosis. The defect in phagocytosis by deficiency was reverted by the forced expression of scb. Furthermore, flies in which the expression of both αPS3 and ßν was inhibited by RNAi showed a level of phagocytosis almost equal to that observed in flies with RNAi for either subunit alone. A loss of αPS3 also decreased the activity of larval hemocytes in the phagocytosis of Staphylococcus aureus. Finally, a co-immunoprecipitation analysis using a Drosophila cell line treated with a chemical cross-linker suggested a physical association between αPS3 and ßν. These results collectively indicated that integrin αPS3/ßν serves as a receptor in the phagocytosis of apoptotic cells and bacteria by Drosophila phagocytes.


Subject(s)
Apoptosis/physiology , Drosophila Proteins/metabolism , Embryo, Nonmammalian/metabolism , Hemocytes/metabolism , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Phagocytosis/physiology , Staphylococcus aureus , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Embryo, Nonmammalian/cytology , Hemocytes/cytology , Integrin alpha Chains/genetics , Integrin beta Chains/genetics , Mutation
19.
J Biol Chem ; 287(26): 21663-72, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22547074

ABSTRACT

Integrin ßν, one of two ß subunits of Drosophila integrin, acts as a receptor in the phagocytosis of apoptotic cells. We here examined the involvement of this receptor in defense against infection by Staphylococcus aureus. Flies lacking integrin ßν died earlier than control flies upon a septic but not oral infection with this bacterium. A loss of integrin ßν reduced the phagocytosis of S. aureus and increased bacterial growth in flies. In contrast, the level of mRNA of an antimicrobial peptide produced upon infection was unchanged in integrin ßν-lacking flies. The simultaneous loss of integrin ßν and Draper, another receptor involved in the phagocytosis of S. aureus, brought about a further decrease in the level of phagocytosis and accelerated death of flies compared with the loss of either receptor alone. A strain of S. aureus lacking lipoteichoic acid, a cell wall component serving as a ligand for Draper, was susceptible to integrin ßν-mediated phagocytosis. In contrast, a S. aureus mutant strain that produces small amounts of peptidoglycan was less efficiently phagocytosed by larval hemocytes, and a loss of integrin ßν in hemocytes reduced a difference in the susceptibility to phagocytosis between parental and mutant strains. Furthermore, a series of experiments revealed the binding of integrin ßν to peptidoglycan of S. aureus. Taken together, these results suggested that Draper and integrin ßν cooperate in the phagocytic elimination of S. aureus by recognizing distinct cell wall components, and that this dual recognition system is necessary for the host organism to survive infection.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Integrins/metabolism , Membrane Proteins/metabolism , Staphylococcus aureus/physiology , Animals , Antimicrobial Cationic Peptides/chemistry , Apoptosis , Crosses, Genetic , Drosophila melanogaster/microbiology , Hemocytes/cytology , Immune System , Immunity, Innate , Male , Models, Biological , Models, Genetic , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Phagocytosis , Staphylococcus aureus/chemistry
20.
J Biol Chem ; 287(5): 3138-46, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22158613

ABSTRACT

To elucidate the actions of Draper, a receptor responsible for the phagocytic clearance of apoptotic cells in Drosophila, we isolated proteins that bind to the extracellular region of Draper using affinity chromatography. One of those proteins has been identified to be an uncharacterized protein called Drosophila melanogaster calcium-binding protein 1 (DmCaBP1). This protein containing the thioredoxin-like domain resided in the endoplasmic reticulum and seemed to be expressed ubiquitously throughout the development of Drosophila. DmCaBP1 was externalized without truncation after the induction of apoptosis somewhat prior to chromatin condensation and DNA cleavage in a manner dependent on the activity of caspases. A recombinant DmCaBP1 protein bound to both apoptotic cells and a hemocyte-derived cell line expressing Draper. Forced expression of DmCaBP1 at the cell surface made non-apoptotic cells susceptible to phagocytosis. Flies deficient in DmCaBP1 expression developed normally and showed Draper-mediated pruning of larval axons, but a defect in the phagocytosis of apoptotic cells in embryos was observed. Loss of Pretaporter, a previously identified ligand for Draper, did not cause a further decrease in the level of phagocytosis in DmCaBP1-lacking embryos. These results collectively suggest that the endoplasmic reticulum protein DmCaBP1 is externalized upon the induction of apoptosis and serves as a tethering molecule to connect apoptotic cells and phagocytes for effective phagocytosis to occur.


Subject(s)
Apoptosis/physiology , Calcium-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Endoplasmic Reticulum/metabolism , Phagocytes/metabolism , Phagocytosis/physiology , Animals , Axons/metabolism , Calcium-Binding Proteins/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Endoplasmic Reticulum/genetics , Hemocytes/cytology , Hemocytes/metabolism , Larva/cytology , Larva/genetics , Larva/metabolism , Phagocytes/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...