Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(20): 20203-20217, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37797304

ABSTRACT

Tantalum-based oxide electrodes have recently drawn much attention as promising anode materials owing to their hybrid Li+ storage mechanism. However, the utilization of LiTaO3 electrode materials that can deliver a high theoretical capacity of 568 mAh g-1 has been neglected. Herein, we prepare a layered LiTaO3 electrode formed artificially by restacking LiTaO3 nanosheets using a facile synthesis method and investigate the Li+ storage performance of this electrode compared with its bulk counterpart. The designed artificially layered anode reaches specific capacities of 474, 290, and 201 mAh g-1, respectively, at 56 (>500 cycles), 280 (>1000 cycles), and 1120 mAg-1 (>2000 cycles) current densities. We also determine that the Li+ storage capacity of the layered LiTaO3 demonstrates a cycling-induced capacity increase after a certain number of cycles. Adopting various characterization techniques on LiTaO3 electrodes before and after electrochemical cycling, we attribute the origin of the cycling-induced improvement of the Li+ storage capacity in these electrodes to the amorphization of the electrode after cycling, formation of metallic tantalum during the partially irreversible conversion mechanism, lower activation overpotential of electrodes due to the formation of Li-rich species by the lithium insertion mechanism, and finally the intrinsic piezoelectric behavior of LiTaO3 that can regulate Li+ diffusion kinetics.

2.
J Environ Sci (China) ; 101: 293-303, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33334524

ABSTRACT

Ceria is widely used as a catalyst for soot combustion, but effects of Zr substitution on the reaction mechanism is ambiguous. The present work elucidates effects of Zr substitution on soot combustion over cubic fluorite-structured nanoceria. The nanostructured CeO2, Ce0.92Zr0.08O2, and Ce0.84Zr0.16O2 composed of 5-6 nm crystallites display Tm-CO2 (the temperature at maximum CO2 yield) at 383, 355, and 375°C under 10 vol.% O2/N2, respectively. The size of agglomerate decreases from 165.5 to 51.9-57.3 nm, which is beneficial for the soot-ceria contact. Moreover, Zr increases the amount of surface oxygen vacancies, generating more active oxygen (O2- and O-) for soot oxidation. Thus, the activities of Ce0.92Zr0.08O2 and Ce0.84Zr0.16O2 in soot combustion are better than that of CeO2. Although oxygen vacancies promote the migration of lattice O2-, the enriched surface Zr also inhibits the mobility of lattice O2-. Therefore, the Tm-CO2 of Ce0.84Zr0.16O2 is higher than that of Ce0.92Zr0.08O2. Based on reaction kinetic study, soot in direct contact with ceria preferentially decomposes with low activation energy, while the oxidation of isolated soot occurs through diffusion with high activation energy. The obtained findings provide new understanding on the soot combustion over nanoceria.


Subject(s)
Cerium , Soot , Catalysis , Oxygen
3.
ACS Appl Mater Interfaces ; 12(42): 47389-47396, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32962347

ABSTRACT

A mesoporous crystalline niobium oxide with tunable pore sizes was synthesized via the sol-gel-based inverse micelle method. The material shows a surface area of 127 m2/g, which is the highest surface area reported so far for crystalline niobium oxide synthesized by soft template methods. The material also has a monomodal pore size distribution with an average pore diameter of 5.6 nm. A comprehensive characterization of niobium oxide was performed using powder X-ray diffraction, Brunauer-Emmett-Teller, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, UV-vis, and X-ray photoelectron spectroscopy. The material acts as an environmentally friendly, solid acid catalyst toward hydration of alkynes under with excellent catalytic activity (99% conversion, 99% selectivity, and 4.39 h-1 TOF). Brønsted acid sites present in the catalyst were found to be responsible for the high catalytic activity. The catalyst was reusable up to five cycles without a significant loss of the activity.

4.
Inorg Chem ; 58(9): 5703-5714, 2019 May 06.
Article in English | MEDLINE | ID: mdl-30964675

ABSTRACT

Heterogeneous catalysts are preferred in fine chemical industries due to their easy recovery and reusability. Here, we report an easily scalable method of ZnO catalysts for coumarin synthesis. Nanocrystalline ZnO particles with diverse morphologies and crystallite sizes were prepared using different solvents. The change in morphology results in changes in band gaps, defects, basicity, and textural properties (surface areas, pore volumes, and pore sizes). The catalytic performances of the synthesized ZnO materials were tested using coumarin synthesis via the Knoevenagel condensation. The catalyst synthesized using methanol shows the highest activity and selectivity (conversion of 74%, selectivity of 94%) with a turnover number of 14.69. The increased activity of the ZnO synthesized in methanol is attributed to the combined effects of moderate basicity and relatively high textural properties of the sample.

5.
Inorg Chem ; 57(12): 6946-6956, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29808686

ABSTRACT

The controlled synthesis of mixed crystallographic phase Mn2O3/Mn3O4 sponge material by varying heating rates and isothermal segments provides valuable information about the morphological and physical properties of the obtained sample. The well-characterized Mn2O3/Mn3O4 sponge and applicability of difference in reactivity of H2 and CO2 desorbed during the synthesis provide new developments in the synthesis of metal oxide materials with unique morphological and surface properties. We report the preparation of a Mn2O3/Mn3O4 sponge using a metal nitrate salt, water, and Dextran, a biopolymer consisting of glucose monomers. The Mn2O3/Mn3O4 sponge prepared at 1 °C·min-1 heating rate to 500 °C and held isothermally for 1 h consisted of large mesopores-macropores (25.5 nm, pore diameter) and a pore volume of 0.413 mL/g. Furthermore, the prepared Mn2O3/Mn3O4 and 5 mol %-Fe-Mn2O3/Mn3O4 sponges provide potential avenues in the development of solid-state catalyst materials for alcohol and amine oxidation reactions.

6.
Inorg Chem ; 57(4): 1815-1823, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29412657

ABSTRACT

Electrocatalytic decomposition of urea for the production of hydrogen, H2, for clean energy applications, such as in fuel cells, has several potential advantages such as reducing carbon emissions in the energy sector and environmental applications to remove urea from animal and human waste facilities. The study and development of new catalyst materials containing nickel metal, the active site for urea decomposition, is a critical aspect of research in inorganic and materials chemistry. We report the synthesis and application of [NH4]NiPO4·6H2O and ß-Ni2P2O7 using in situ prepared [NH4]2HPO4. The [NH4]NiPO4·6H2O is calcined at varying temperatures and tested for electrocatalytic decomposition of urea. Our results indicate that [NH4]NiPO4·6H2O calcined at 300 °C with an amorphous crystal structure and, for the first time applied for urea electrocatalytic decomposition, had the greatest reported electroactive surface area (ESA) of 142 cm2/mg and an onset potential of 0.33 V (SCE) and was stable over a 24-h test period.

SELECTION OF CITATIONS
SEARCH DETAIL
...