Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 24(1): 267, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36510250

ABSTRACT

BACKGROUND: Lupus nephritis (LN) is an inflammatory disease of the kidneys affecting patients with systemic lupus erythematosus. Current immunosuppressive and cytotoxic therapies are associated with serious side effects and fail to protect 20-40% of LN patients from end-stage renal disease. In this study, we investigated whether a small heat shock protein, HSPB5, can reduce kidney inflammation and the clinical manifestations of the disease in NZB/W F1 mice. Furthermore, we investigated whether HSPB5 can enhance the effects of methylprednisolone, a standard-of-care drug in LN, in an endotoxemia mouse model. METHODS: NZB/W F1 mice were treated with HSPB5, methylprednisolone, or vehicle from 23 to 38 weeks of age. Disease progression was evaluated by weekly proteinuria scores. At the end of the study, the blood, urine, spleens, and kidneys were collected for the assessment of proteinuria, blood urea nitrogen, kidney histology, serum IL-6 and anti-dsDNA levels, immune cell populations, and their phenotypes, as well as the transcript levels of proinflammatory chemokine/cytokines in the kidneys. HSPB5 was also evaluated in combination with methylprednisolone in a lipopolysaccharide-induced endotoxemia mouse model; serum IL-6 levels were measured at 24 h post-endotoxemia induction. RESULTS: HSPB5 significantly reduced terminal proteinuria and BUN and substantially improved kidney pathology. Similar trends, although to a lower extent, were observed with methylprednisolone treatment. Serum IL-6 levels and kidney expression of BAFF, IL-6, IFNγ, MCP-1 (CCL2), and KIM-1 were reduced, whereas nephrin expression was significantly preserved compared to vehicle-treated mice. Lastly, splenic Tregs and Bregs were significantly induced with HSPB5 treatment. HSPB5 in combination with methylprednisolone also significantly reduced serum IL-6 levels in endotoxemia mice. CONCLUSIONS: HSPB5 treatment reduces kidney inflammation and injury, providing therapeutic benefits in NZB/W F1 mice. Given that HSPB5 enhances the anti-inflammatory effects of methylprednisolone, there is a strong interest to develop HSBP5 as a therapeutic for the treatment of LN.


Subject(s)
Lupus Nephritis , alpha-Crystallin B Chain , Animals , Mice , Disease Models, Animal , Interleukin-6/metabolism , Kidney/pathology , Lupus Erythematosus, Systemic , Lupus Nephritis/drug therapy , Lupus Nephritis/metabolism , Methylprednisolone/pharmacology , Mice, Inbred NZB , Proteinuria/prevention & control , Proteinuria/metabolism , Proteinuria/pathology , alpha-Crystallin B Chain/metabolism
2.
Autoimmunity ; 55(3): 192-202, 2022 05.
Article in English | MEDLINE | ID: mdl-35137667

ABSTRACT

Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus. The current treatments for LN are accompanied with severe immunotoxicity and have limits of effectiveness. Since our in vitro experiments demonstrated that a small heat shock protein (HSP), alpha-B crystallin (HSPB5; CRYAB), selectively modulates myeloid cells towards anti-inflammatory and tolerogenic phenotypes, the aim of this study was to investigate whether HSPB5 can attenuate the severity of LN. MRL/lpr mice were treated intravenously with HSPB5 at 2.5 or 10 µg/dose twice per week after disease onset, from 11 to 21 weeks of age. Disease progression was monitored by weekly measurements of proteinuria, and sera, spleens, and kidneys were collected for assessment at the terminal time point. Treatment with 10 µg HSPB5 substantially reduced endocapillary proliferation and tubular atrophy, which significantly reduced proteinuria and blood urea nitrogen (BUN). Compared to vehicle, 10 µg HSPB5 treatment substantially decreased activation/proliferation of splenocytes, increased IL-10+ macrophages, T and B regulatory cells (Treg, Breg), increased serum IL-10, and lowered expression of IL-6 in kidneys, which correlated with improved kidney function and pathology. This study demonstrated the utility of exogenous human HSPB5 to attenuate severe nephropathy in MRL/lpr mice and provides evidence in favour of a novel therapeutic approach for lupus nephritis.


Subject(s)
Heat-Shock Proteins, Small , Lupus Nephritis , Animals , Disease Models, Animal , Female , HSP47 Heat-Shock Proteins , Heat-Shock Proteins, Small/metabolism , Heat-Shock Proteins, Small/therapeutic use , Interleukin-10/metabolism , Kidney/metabolism , Kidney/pathology , Lupus Nephritis/pathology , Male , Mice , Mice, Inbred MRL lpr , Proteinuria/drug therapy
3.
Article in English | MEDLINE | ID: mdl-27746171

ABSTRACT

Endoplasmic reticulum (ER) stress can result in the accumulation of unfolded/misfolded protein in the ER lumen, which can trigger the unfolded protein response (UPR) resulting in the activation of various genes including immunoglobulin-binding protein (BiP; also known as glucose-regulated protein 78 or HSPA5). BiP, an ER heat shock protein 70 (HSP70) family member, binds to unfolded protein, inhibits their aggregation and re-folds them in an ATP-dependent manner. While cadmium, an environmental contaminant, was shown to induce the accumulation of HSP70 in vertebrate cells, less information is available regarding the effect of this metal on BiP accumulation or function. In this study, cadmium chloride treatment of Xenopus laevis A6 kidney epithelial cells induced a dose- and time-dependent increase in BiP, HSP70 and heme oxygenase-1 (HO-1) accumulation. Exposure of cells to a relatively low cadmium concentration at a mild heat shock temperature of 30°C greatly enhanced BiP and HSP70 accumulation compared to cadmium at 22°C. Treatment of cells with the glutathione synthesis inhibitor, buthionine sulfoximine, enhanced cadmium-induced BiP and HSP70 accumulation. Immunocytochemistry revealed that cadmium-induced BiP accumulation occurred in a punctate pattern in the perinuclear region. In some cells treated with cadmium chloride or the proteasomal inhibitor, MG132, large BiP complexes were observed that co-localized with aggregated protein or aggresome-like structures. These BiP/aggresome-like structures were also observed in cells treated simultaneously with cadmium at 30°C or in the presence of buthionine sulfoximine. In amphibians, the association of BiP with unfolded protein and its possible role in aggresome function may be vital in the maintenance of cellular proteostasis.


Subject(s)
Cadmium Chloride/toxicity , Environmental Pollutants/toxicity , Epithelial Cells/drug effects , Heat-Shock Proteins/metabolism , Kidney/drug effects , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , Buthionine Sulfoximine/pharmacology , Calcimycin/pharmacology , Cell Line , Dose-Response Relationship, Drug , Endoplasmic Reticulum Chaperone BiP , Epithelial Cells/metabolism , Glutamate-Cysteine Ligase/antagonists & inhibitors , Glutamate-Cysteine Ligase/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response , Heme Oxygenase-1/metabolism , Kidney/metabolism , Leupeptins/pharmacology , Oxidative Stress , Proteasome Inhibitors/pharmacology , Time Factors , Tunicamycin/pharmacology , Unfolded Protein Response , Up-Regulation
4.
Article in English | MEDLINE | ID: mdl-27354198

ABSTRACT

Small heat shock proteins (sHSPs) are molecular chaperones that bind to unfolded protein, inhibit the formation of toxic aggregates and facilitate their refolding and/or degradation. Previously, the only sHSPs that have been studied in detail in the model frog system, Xenopus laevis, were members of the HSP30 family and HSPB1 (HSP27). We now report the analysis of X. laevis HSPB6, an ortholog of mammalian HSPB6. X. laevis HSPB6 cDNA encodes a 168 aa protein that contains an α-crystallin domain, a polar C-terminal extension and some possible phosphorylation sites. X. laevis HSPB6 shares 94% identity with a X. tropicalis HSPB6, 65% with turtle, 59% with humans, 49% with zebrafish and only 50% and 43% with X. laevis HSPB1 and HSP30C, respectively. Phylogenetic analysis revealed that X. laevis HSPB6 grouped more closely with mammalian and reptilian HSPB6s than with fish HSPB6. X. laevis recombinant HSPB6 displayed molecular chaperone properties since it had the ability to inhibit heat-induced aggregation of citrate synthase. Immunoblot analysis determined that HSPB6 was present constitutively in kidney epithelial cells and that heat shock treatment did not upregulate HSPB6 levels. While treatment with the proteasomal inhibitor, MG132, resulted in a 2-fold increase in HSPB6 levels, exposure to cadmium chloride produced a slight increase in HSPB6. These findings were in contrast to HSP70, which was enhanced in response to all three stressors. Finally, immunocytochemical analysis revealed that HSPB6 was present in the cytoplasm in the perinuclear region with some in the nucleus.


Subject(s)
HSP20 Heat-Shock Proteins/genetics , HSP20 Heat-Shock Proteins/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , DNA, Complementary/genetics , Epithelial Cells/metabolism , Gene Expression , HSP20 Heat-Shock Proteins/chemistry , Immunohistochemistry , Kidney/metabolism , Phylogeny , Protein Domains , Sequence Homology, Amino Acid , Xenopus Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...