Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biodivers Data J ; 9: e77615, 2021.
Article in English | MEDLINE | ID: mdl-34866965

ABSTRACT

BACKGROUND: The paper is based on the dataset whose purpose was to deliver, in the form of GBIF-mediated data, diverse materials on the biodiversity of a large mire, Shichengskoe mire (Vologda Region, north-western Russia), including its various mire sites and intra-mire water bodies. The dataset was based on our materials collected for two decades (from 2000 to 2021) in different parts and biotopes of the Shichengskoe mire and complemented by scarce data obtained previously by other researchers. The data contain materials on the diversity of Animalia (2886 occurrences), Bacteria (22), Chromista (256), Fungi (111), Plantae (2463) and Protozoa (131). Within the study period, the most detailed and long-term biodiversity studies were carried out for higher plants and invertebrates. On the other hand, the data on the composition of lichens, protozoa, algae, basidiomycetes, some groups of invertebrates and, to a lesser extent, lichens and vertebrates are far less comprehensive and require further substantial research efforts. The list includes occurrences from both the peatland (mire sites and mire margins different in typology) and the objects of the mire hydrographic network. In a standardised form, this article summarises both already published (mainly in Russian) and unpublished materials. NEW INFORMATION: The paper summarises the results of long-term research on the biodiversity of a boreal mire, including its hydrographic network. A total of 5869 occurrences were included in the dataset published in the Global Biodiversity Information Facility (GBIF, gbif.org) for the first time. According to the GBIF taxonomic backbone, the dataset covers 1358 taxa, including 1250 lower-rank taxa (species, subspecies, varieties, forms) and 108 taxa identified to the genus level. Several species found in the Shichengskoe mire, mainly belonging to Bacteria, Chromista and Protozoa, have never been listed in GBIF for the territory of Russia before. The overwhelming majority of occurrences and identified species came from the territory of Shichengskiy Landscape Reserve. Due to our work, this Reserve is now the most studied regional reserve in the Vologda Region with respect to biodiversity. By the number of revealed species, it is close to two federal protected areas: Darwinskiy State Nature Biospheric Reserve and National Park "Russkiy Sever".

2.
J Fungi (Basel) ; 6(4)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33317092

ABSTRACT

Aboveground species richness patterns of vascular plants, aphyllophoroid macrofungi, bryophytes and lichens were compared along an altitudinal gradient (80-310 m a.s.l.) on the Slantsevaya mountain at the eastern macroslope of the Polar Urals (Russia). Five altitudinal levels were included in the study: (1) Northern boreal forest with larch-spruce in the Sob' river valley habitats; (2-3) two levels of closed, northern boreal, larch-dominated forests on the slopes; (4) crook-stemmed forest; (5) tundra habitats above the timberline. Vascular plant or bryophyte species richness was not affected by altitudinal levels, but lichen species richness significantly increased from the river valley to the tundra. For aphyllophoroid macrofungi, species richness was highest at intermediate and low altitudes, and poorest in the tundra. These results indicate a positive ecotone effect on aphyllophoroid fungal species richness. The species richness of aphyllophoroid fungi as a whole was neither correlated to mortmass stocks, nor to species richness of vascular plants, but individual ecological or morphological groups depended on these parameters. Poroid fungal species richness was positively correlated to tree age, wood biomass and crown density, and therefore peaked in the middle of the slope and at the foot of the mountain. In contrast, clavarioid fungal species richness was negatively related to woody bio- and mortmass, and therefore peaked in the tundra. This altitudinal level was characterized by high biomass proportions of lichens and mosses, and by high litter mortmass. The proportion of corticoid fungi increased with altitude, reaching its maximum at the timberline. Results from the different methods used in this work were concordant, and showed significant patterns. Tundra communities differ significantly from the forest communities, as is also confirmed by nonmetric multidimensional scaling (NMDS) analyses based on the spectrum of morphological and ecological groups of aphyllophoroid fungi.

SELECTION OF CITATIONS
SEARCH DETAIL