Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(6): 2667-2678, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35107280

ABSTRACT

Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL14 and GroES7 at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature (Tm ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESy-ATPn, where y = 1, 2, 8 and n = 0, 1, 2, 8, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.Nat. Struct. Mol. Biol. 2006, 13, 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.


Subject(s)
Adenosine Triphosphate/metabolism , Chaperonin 10/metabolism , Chaperonin 60/metabolism , Magnesium/metabolism , Chaperonin 10/chemistry , Chaperonin 60/chemistry , Escherichia coli/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Ligands , Mass Spectrometry , Protein Binding , Protein Conformation , Protein Stability , Protein Unfolding , Temperature
2.
Anal Chem ; 93(18): 6924-6931, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33904705

ABSTRACT

Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. Here, we describe a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.


Subject(s)
Proteins , Spectrometry, Mass, Electrospray Ionization , Ligands , Phase Transition , Temperature
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723061

ABSTRACT

Ras is regulated by a specific guanine nucleotide exchange factor Son of Sevenless (SOS), which facilitates the exchange of inactive, GDP-bound Ras with GTP. The catalytic activity of SOS is also allosterically modulated by an active Ras (Ras-GTP). However, it remains poorly understood how oncogenic Ras mutants interact with SOS and modulate its activity. Here, native ion mobility-mass spectrometry is employed to monitor the assembly of the catalytic domain of SOS (SOScat) with KRas and three cancer-associated mutants (G12C, G13D, and Q61H), leading to the discovery of different molecular assemblies and distinct conformers of SOScat engaging KRas. We also find KRasG13D exhibits high affinity for SOScat and is a potent allosteric modulator of its activity. A structure of the KRasG13D•SOScat complex was determined using cryogenic electron microscopy providing insight into the enhanced affinity of the mutant protein. In addition, we find that KRasG13D-GTP can allosterically increase the nucleotide exchange rate of KRas at the active site more than twofold compared to KRas-GTP. Furthermore, small-molecule Ras•SOS disruptors fail to dissociate KRasG13D•SOScat complexes, underscoring the need for more potent disruptors. Taken together, a better understanding of the interaction between oncogenic Ras mutants and SOS will provide avenues for improved therapeutic interventions.


Subject(s)
Catalytic Domain , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Son of Sevenless Proteins/metabolism , Catalysis , Catalytic Domain/genetics , Mass Spectrometry , Oncogenes , Protein Binding , Son of Sevenless Proteins/chemistry
4.
Mass Spectrom Rev ; 40(3): 280-305, 2021 05.
Article in English | MEDLINE | ID: mdl-32608033

ABSTRACT

Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Fourier Analysis , Mass Spectrometry/instrumentation , Peptides/analysis , Peptides/chemistry , Protein Conformation , Protein Folding , Protein Stability , Proteins/analysis , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Ubiquitin , Water/chemistry
5.
Int J Mass Spectrom ; 4582020 Dec.
Article in English | MEDLINE | ID: mdl-33162786

ABSTRACT

Native mass spectrometry (nMS) is increasingly used for studies of large biomolecules (>100 kDa), especially proteins and protein complexes. The growth in this area can be attributed to advances in native electrospray ionization as well as instrumentation that is capable of accessing high mass-to-charge (m/z) regimes without significant losses in sensitivity and resolution. Here, we describe modifications to the ESI source of an Agilent 6545XT Q-TOF MS that is tailored for analysis of large biomolecules. The modified ESI source was evaluated using both soluble and membrane protein complexes ranging from ~127 to ~232 kDa and the ~801 kDa protein chaperone GroEL. The increased mass resolution of the instrument affords the ability to resolve small molecule adducts and analyze collision-induced dissociation products of the native complexes.

6.
Anal Chem ; 92(16): 11155-11163, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32662991

ABSTRACT

Rotationally averaged collision cross section (CCS) values for a series of proteins and protein complexes ranging in size from 8.6 to 810 kDa are reported. The CCSs were obtained using a native electrospray ionization drift tube ion mobility-Orbitrap mass spectrometer specifically designed to enhance sensitivity while having high-resolution ion mobility and mass capabilities. Periodic focusing (PF)-drift tube (DT)-ion mobility (IM) provides first-principles determination of the CCS of large biomolecules that can then be used as CCS calibrants. The experimental, first-principles CCS values are compared to previously reported experimentally determined and computationally calculated CCS using projected superposition approximation (PSA), the Ion Mobility Projection Approximation Calculation Tool (IMPACT), and Collidoscope. Experimental CCS values are generally in agreement with previously reported CCSs, with values falling within ∼5.5%. In addition, an ion mobility resolution (CCS centroid divided by CCS fwhm) of ∼60 is obtained for pyruvate kinase (MW ∼ 233 kDa); however, ion mobility resolution for bovine serum albumin (MW ∼ 68 kDa) is less than ∼20, which arises from sample impurities and underscores the importance of sample quality. The high resolution afforded by the ion mobility-Orbitrap mass analyzer provides new opportunities to understand the intricate details of protein complexes such as the impact of post-translational modifications (PTMs), stoichiometry, and conformational changes induced by ligand binding.


Subject(s)
Proteins/chemistry , Animals , Cattle , Ion Mobility Spectrometry/methods , Ion Mobility Spectrometry/statistics & numerical data , Mass Spectrometry/methods , Mass Spectrometry/statistics & numerical data , Protein Structure, Quaternary , Rabbits
7.
Anal Chem ; 92(13): 8923-8932, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32515580

ABSTRACT

Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the ß-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the ß-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the ß-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.


Subject(s)
Metallothionein/metabolism , Silver/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Binding Sites , Cadmium/chemistry , Cadmium/metabolism , Ethylmaleimide/chemistry , Humans , Ion Mobility Spectrometry , Ions/chemistry , Metallothionein/chemistry , Protein Binding , Protein Domains , Silver/chemistry
8.
Trends Analyt Chem ; 1242020 Mar.
Article in English | MEDLINE | ID: mdl-32189816

ABSTRACT

Native ion mobility-mass spectrometry (IM-MS) is an emerging biophysical approach to probe the intricate details of protein structure and function. The instrument design enables measurements of accurate first-principle determinations of rotationally-averaged ion-neutral collision cross sections coupled with high-mass, high-resolution mass measurement capabilities of Orbitrap MS. The inherent duty-cycle mismatch between drift tube IM and Orbitrap MS is alleviated by operating the drift tube in a frequency modulated mode while continuously acquiring mass spectra with the Orbitrap MS. Fourier transform of the resulting time-domain signal, i.e., ion abundances as a function of the modulation frequency, yields a frequency domain spectrum that is then converted (s-1 to s) to IM drift time. This multiplexed approach allows for a duty-cycle of 25% compared to <1% for traditional "pulse-and-wait" IM-ToF-MS. Improvements in mobility and mass resolution of the IM-Orbitrap allows for accurate analysis of intact protein complexes and the possibility of capturing protein dynamics.

9.
Biochemistry ; 59(9): 1013-1022, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32101399

ABSTRACT

Recombinant proteins have increased our knowledge regarding the physiological role of proteins; however, affinity purification tags are often not cleaved prior to analysis, and their effects on protein structure, stability and assembly are often overlooked. In this study, the stabilizing effects of an N-terminus dual-FLAG (FT2) tag fusion to transthyretin (TTR), a construct used in previous studies, are investigated using native ion mobility-mass spectrometry (IM-MS). A combination of collision-induced unfolding and variable-temperature electrospray ionization is used to compare gas- and solution-phase stabilities of FT2-TTR to wild-type and C-terminal tagged TTR. Despite an increased stability of both gas- and solution-phase FT2-TTR, thermal degradation of FT2-TTR was observed at elevated temperatures, viz., backbone cleavage occurring between Lys9 and Cys10. This cleavage reaction is consistent with previously reported metalloprotease activity of TTR [Liz et al. 2009] and is suppressed by either metal chelation or excess zinc. This study brings to the fore the effect of affinity tag stabilization of TTR and emphasizes unprecedented detail afforded by native IM-MS to assess structural discrepancies of recombinant proteins from their wild-type counterparts.


Subject(s)
Prealbumin/chemistry , Prealbumin/metabolism , Recombinant Proteins/isolation & purification , Humans , Oligopeptides , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship
10.
Biochemistry ; 58(31): 3396-3405, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31306575

ABSTRACT

Mutations in RAS are associated with many different cancers and have been a therapeutic target for more than three decades. RAS cycles from an active to inactive state by both intrinsic and GTPase-activating protein (GAP)-stimulated hydrolysis. The activated enzyme interacts with downstream effectors, leading to tumor proliferation. Mutations in RAS associated with cancer are insensitive to GAP, and the rate of inactivation is limited to their intrinsic hydrolysis rate. Here, we use high-resolution native mass spectrometry (MS) to determine the kinetics and transition state thermodynamics of intrinsic hydrolysis for K-RAS and its oncogenic mutants. MS data reveal heterogeneity where both 2'-deoxy and 2'-hydroxy forms of GDP (guanosine diphosphate) and GTP (guanosine triphosphate) are bound to the recombinant enzyme. Intrinsic GTPase activity is directly monitored by the loss in mass of K-RAS bound to GTP, which corresponds to the release of phosphate. The rates determined from MS are in direct agreement with those measured using an established solution-based assay. Our results show that the transition state thermodynamics for the intrinsic GTPase activity of K-RAS is both enthalpically and entropically unfavorable. The oncogenic mutants G12C, Q61H, and G13D unexpectedly exhibit a 2'-deoxy GTP intrinsic hydrolysis rate higher than that for GTP.


Subject(s)
GTP Phosphohydrolases/metabolism , Mass Spectrometry , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Carcinogenesis , Deoxyguanine Nucleotides/metabolism , Enzyme Activation , Hydrolysis , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Thermodynamics
11.
Chem Commun (Camb) ; 55(28): 4091-4094, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30887985

ABSTRACT

The amyloidogenic mechanism of transthyretin is still debated but understanding it fully could lend insight into disease progression and potential therapeutics. Transthyretin was investigated revealing a metal-induced (Cr/Cu) oxidation pathway leading to N-terminal backbone fragmentation and oligomer formation; previously hidden details were revealed only by FT-IM-Orbitrap MS and surface-induced dissociation.

12.
Anal Chem ; 91(3): 2345-2351, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30642177

ABSTRACT

The proposed mechanism of fibril formation of transthyretin (TTR) involves self-assembly of partially unfolded monomers. However, the mechanism(s) of disassembly to monomer and potential intermediates involved in this process are not fully understood. In this study, native mass spectrometry and surface-induced dissociation (SID) are used to investigate the TTR disassembly mechanism(s) and the effects of temperature and ionic strength on the kinetics of TTR complex formation. Results from the SID of hybrid tetramers formed during subunit exchange provide strong evidence for a two-step mechanism whereby the tetramer dissociates to dimers that then dissociate to monomers. Also, the SID results uncovered a hidden pathway in which a specific topology of the hybrid tetramer is directly produced by assembly of dimers in the early steps of TTR disassembly. Implementation of SID to dissect protein topology during subunit exchange provides unique opportunities to gain unparalleled insight into disassembly pathways.


Subject(s)
Prealbumin/chemistry , Protein Structure, Quaternary , Kinetics , Mass Spectrometry/methods , Models, Chemical , Models, Molecular , Protein Multimerization , Temperature
13.
Anal Chem ; 90(17): 10472-10478, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30091588

ABSTRACT

A new instrument configuration for native ion mobility-mass spectrometry (IM-MS) is described. Macromolecule ions are generated by using a static ESI source coupled to an RF ion funnel, and these ions are then mobility and mass analyzed using a periodic focusing drift tube IM analyzer and an Orbitrap mass spectrometer. The instrument design retains the capabilities for first-principles determination of rotationally averaged ion-neutral collision cross sections and high-resolution measurements in both mobility and mass analysis modes for intact protein complexes. Operation in the IM mode utilizes FT-IMS modes (originally described by Knorr ( Knorr , F. J. Anal. Chem . 1985 , 57 ( 2 ), 402 - 406 )), which provides a means to overcome the inherent duty cycle mismatch for drift tube (DT)-IM and Orbitrap mass analysis. The performance of the native ESI-FT-DT-IM-Orbitrap MS instrument was evaluated using the protein complexes Gln K (MW 44 kDa) and streptavidin (MW 53 kDa) bound to small molecules (ADP and biotin, respectively) and transthyretin (MW 56 kDa) bound to thyroxine and zinc.


Subject(s)
Fourier Analysis , Mass Spectrometry/methods , Prealbumin/chemistry , Streptavidin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...