Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Biomed Khim ; 69(5): 253-280, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37937429

ABSTRACT

Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or ß-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.


Subject(s)
Poliomyelitis , Poliovirus , Vaccines , Humans , Poliovirus/genetics , Formaldehyde , Propiolactone , Poliomyelitis/prevention & control
2.
Biomed Khim ; 69(1): 19-38, 2023 Feb.
Article in Russian | MEDLINE | ID: mdl-36857424

ABSTRACT

L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.


Subject(s)
Acrylamide , Asparaginase , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...