Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36835449

ABSTRACT

In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.


Subject(s)
Bacteriophages , Podoviridae , Bacteriophages/genetics , Klebsiella pneumoniae/genetics , Phylogeny , Genome, Viral , Podoviridae/genetics , Recombinant Proteins/genetics
2.
Microorganisms ; 10(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36014100

ABSTRACT

To date, transcriptomics have been widely and successfully employed to study gene expression in different cell growth phases of bacteria. Since bifidobacteria represent a major component of the gut microbiota of a healthy human that is associated with numerous health benefits for the host, it is important to study them using transcriptomics. In this study, we applied the RNA-Seq technique to study global gene expression of B. longum at different growth phases in order to better understand the response of bifidobacterial cells to the specific conditions of the human gut. We have shown that in the lag phase, ABC transporters, whose function may be linked to active substrate utilization, are increasingly expressed due to preparation for cell division. In the exponential phase, the functions of activated genes include synthesis of amino acids (alanine and arginine), energy metabolism (glycolysis/gluconeogenesis and nitrogen metabolism), and translation, all of which promote active cell division, leading to exponential growth of the culture. In the stationary phase, we observed a decrease in the expression of genes involved in the control of the rate of cell division and an increase in the expression of genes involved in defense-related metabolic pathways. We surmise that the latter ensures cell survival in the nutrient-deprived conditions of the stationary growth phase.

3.
Front Microbiol ; 12: 669618, 2021.
Article in English | MEDLINE | ID: mdl-34434173

ABSTRACT

Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.

4.
Front Microbiol ; 12: 724042, 2021.
Article in English | MEDLINE | ID: mdl-34421882

ABSTRACT

Tuberculosis (TB), caused by the Mycobacterium tuberculosis complex bacteria, is one of the most pressing health problems. The development of new drugs and new therapeutic regimens effective against the pathogen is one of the greatest challenges in the way of tuberculosis control. Imidazo[1,2-b][1,2,4,5]tetrazines have shown promising activity against M. tuberculosis and M. smegmatis strains. Mutations in MSMEG_1380 lead to mmpS5-mmpL5 operon overexpression, which provides M. smegmatis with efflux-mediated resistance to imidazo[1,2-b][1,2,4,5]tetrazines, but the exact mechanism of action of these compounds remains unknown. To assess the mode of action of imidazo[1,2-b][1,2,4,5]tetrazines, we analyzed the transcriptomic response of M. smegmatis to three different concentrations of 3a compound: 1/8×, 1/4×, and 1/2× MIC. Six groups of genes responsible for siderophore synthesis and transport were upregulated in a dose-dependent manner, while virtual docking revealed proteins involved in siderophore synthesis as possible targets for 3a. Thus, we suggest that imidazo[1,2-b][1,2,4,5]tetrazines may affect mycobacterial iron metabolism.

5.
Microorganisms ; 9(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34442871

ABSTRACT

Mycobacterium tuberculosis Beijing genotype associated with drug resistance is a growing public health problem worldwide. The aim of this study was the assessment of virulence for C57BL/6 mice after infection by clinical M. tuberculosis strains 267/47 and 120/26, which belong to the modern sublineages B0/W148 and Central Asia outbreak of the Beijing genotype, respectively. The sublineages were identified by the analysis of the strains' whole-genomes. The strains 267/47 and 120/26 were characterized as agents of pre-extensively drug-resistant (pre-XDR) and multidrug-resistant (MDR) tuberculosis, respectively. Both clinical strains were slow-growing in 7H9 broth compared to the M. tuberculosis H37Rv strain. The survival rates of C57BL/6 mice infected by 267/47, 120/26, and H37Rv on the 150th day postinfection were 10%, 40%, and 70%, respectively. Mycobacterial load in the lungs, spleen, and liver was higher and histopathological changes were more expressed for mice infected by the 267/47 strain compared to those infected by the 120/26 and H37Rv strains. The cytokine response in the lungs of C57BL/6 mice after infection with the 267/47, 120/26, and H37Rv strains was different. Notably, proinflammatory cytokine genes Il-1α, Il-6, Il-7, and Il-17, as well as anti-inflammatory genes Il-6 and Il-13, were downregulated after an infection caused by the 267/47 strain compared to those after infection with the H37Rv strain.

6.
Front Immunol ; 11: 595877, 2020.
Article in English | MEDLINE | ID: mdl-33304352

ABSTRACT

As permanent residents of the normal gut microbiota, bifidobacteria have evolved to adapt to the host's immune response whose priority is to eliminate pathogenic agents. The mechanisms that ensure the survival of commensals during inflammation and maintain the stability of the core component of the normal gut microbiota in such conditions remain poorly understood. We propose a new in vitro approach to study the mechanisms of resistance to immune response factors based on high-throughput sequencing followed by transcriptome analysis. This approach allowed us to detect differentially expressed genes associated with inflammation. In this study, we demonstrated that the presence of the pro-inflammatory cytokines IL-6 and TNFα to the growth medium of the B. longum subsp. longum GT15 strain changes the latter's growth rate insignificantly while affecting the expression of certain genes. We identified these genes and performed a COG and a KEGG pathway enrichment analysis. Using phylogenetic profiling we predicted the operons of genes whose expression was triggered by the cytokines TNFα and IL-6 in vitro. By mapping the transcription start points, we experimentally validated the predicted operons. Thus, in this study, we predicted the genes involved in a putative signaling pathway underlying the mechanisms of resistance to inflammatory factors in bifidobacteria. Since bifidobacteria are a major component of the human intestinal microbiota exhibiting pronounced anti-inflammatory properties, this study is of great practical and scientific relevance.


Subject(s)
Bifidobacterium longum , Gene Expression Regulation, Bacterial , Interleukin-6/immunology , Tumor Necrosis Factor-alpha/immunology , Bifidobacterium longum/genetics , Bifidobacterium longum/growth & development , Bifidobacterium longum/immunology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/immunology , Gene Regulatory Networks , Genome, Bacterial , Inflammation/immunology
7.
Org Biomol Chem ; 18(31): 6147-6154, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32719836

ABSTRACT

G-quadruplexes (G4) represent one class of non-canonical secondary nucleic acid structures that are currently regarded as promising and attractive targets for anti-cancer, anti-viral and antibacterial therapy. Herein, we probe a new i-clamp-inspired phenoxazine scaffold for designing G4-stabilizing ligands. The length of the protonated aminoalkyl tethers ('arms') of the phenoxazine-based ligand was optimized in silico. Two double-armed ligands differing in the relative orientation of their arms and one single-armed ligand were synthesized. The two-armed ligands significantly enhanced the thermal stability of the G-quadruplex structures (increasing the melting temperature by up to 20 °C) and displayed G4 selectivity over duplex DNA. The ligands look promising for biological studies and the phenoxazine scaffold could be a starting point for designing new G4-interacting compounds.

8.
Pathogens ; 9(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365818

ABSTRACT

The Central Asia Outbreak (CAO) clade is a growing public health problem for Central Asian countries. Members of the clade belong to the narrow branch of the Mycobacterium tuberculosis Beijing genotype and are characterized by multidrug resistance and increased transmissibility. The Rostov strain of M. tuberculosis isolated in Russia and attributed to the CAO clade based on PCR-assay and whole genome sequencing and the laboratory strain H37Rv were selected to evaluate the virulence on C57Bl/6 mice models by intravenous injection. All mice infected with the Rostov strain succumbed to death within a 48-day period, while more than half of the mice infected by the H37Rv strain survived within a 90-day period. Mice weight analysis revealed irreversible and severe depletion of animals infected with the Rostov strain compared to H37Rv. The histological investigation of lung and liver tissues of mice on the 30th day after injection of mycobacterial bacilli showed that the pattern of pathological changes generated by two strains were different. Moreover, bacterial load in the liver and lungs was higher for the Rostov strain infection. In conclusion, our data demonstrate that the drug-resistant Rostov strain exhibits a highly virulent phenotype which can be partly explained by the CAO-specific mutations.

10.
Genome Announc ; 4(2)2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27034492

ABSTRACT

Mycobacterium bovisBCG (Bacille Calmette-Guérin) is a vaccine strain used for protection against tuberculosis. Here, we announce the complete genome sequence ofM. bovisstrain BCG-1 (Russia). Extensive use of this strain necessitates the study of its genome stability by comparative analysis.

11.
Infect Genet Evol ; 26: 41-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24815729

ABSTRACT

Mycobacterium tuberculosis remains a leading cause of morbidity and mortality worldwide. This circumstance underscores the relevance of population studies of tuberculosis for transmission dynamics control. In this study, we describe a conversion of the spoligotyping of M.tuberculosis complex isolates on a platform of custom designed hydrogel microarrays (biochips). An algorithm of automated data processing and interpretation of hybridization results using online database was proposed. In total, the 445 samples were tested. Initially, 97 samples representing multiple species of M.tuberculosis complex and nontuberculous mycobacteria were used for protocol optimization and cut-off settings. The developed assay was further evaluated on the out-group of the 348 mycobacterial samples. Results showed high concordance with the conventional membrane-based spoligotyping method. Diagnostic sensitivity and diagnostic specificity of the spoligo-biochip assay were 99.1% and 100%, respectively. The analytical sensitivity was determined to be 500 genomic equivalents of mycobacterial DNA. The high sensitivity and specificity, ease of operation procedures, and the automatic processing of measured data make the developed assay a useful tool for the rapid and accurate genotyping of M. tuberculosis.


Subject(s)
Genotype , Molecular Typing , Mycobacterium tuberculosis/genetics , Oligonucleotide Array Sequence Analysis , DNA, Bacterial/genetics , Humans , Molecular Typing/methods , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/isolation & purification , Tuberculosis/microbiology
12.
BMC Genomics ; 15: 308, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24767249

ABSTRACT

BACKGROUND: Tuberculosis (TB) poses a worldwide threat due to advancing multidrug-resistant strains and deadly co-infections with Human immunodeficiency virus. Today large amounts of Mycobacterium tuberculosis whole genome sequencing data are being assessed broadly and yet there exists no comprehensive online resource that connects M. tuberculosis genome variants with geographic origin, with drug resistance or with clinical outcome. DESCRIPTION: Here we describe a broadly inclusive unifying Genome-wide Mycobacterium tuberculosis Variation (GMTV) database, (http://mtb.dobzhanskycenter.org) that catalogues genome variations of M. tuberculosis strains collected across Russia. GMTV contains a broad spectrum of data derived from different sources and related to M. tuberculosis molecular biology, epidemiology, TB clinical outcome, year and place of isolation, drug resistance profiles and displays the variants across the genome using a dedicated genome browser. GMTV database, which includes 1084 genomes and over 69,000 SNP or Indel variants, can be queried about M. tuberculosis genome variation and putative associations with drug resistance, geographical origin, and clinical stages and outcomes. CONCLUSIONS: Implementation of GMTV tracks the pattern of changes of M. tuberculosis strains in different geographical areas, facilitates disease gene discoveries associated with drug resistance or different clinical sequelae, and automates comparative genomic analyses among M. tuberculosis strains.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Tuberculosis/epidemiology , Humans , Tuberculosis/microbiology
13.
PLoS One ; 9(1): e84971, 2014.
Article in English | MEDLINE | ID: mdl-24416324

ABSTRACT

The Mycobacterium tuberculosis (MTB) Beijing family isolates are geographically widespread, and there are examples of Beijing isolates that are hypervirulent and associated with drug resistance. One-fourth of Beijing genotype isolates found in Russia belong to the B0/W148 group. The aim of the present study was to investigate features of these endemic strains on a genomic level. Four Russian clinical isolates of this group were sequenced, and the data obtained was compared with published sequences of various MTB strain genomes, including genome of strain W-148 of the same B0/W148 group. The comparison of the W-148 and H37Rv genomes revealed two independent inversions of large segments of the chromosome. The same inversions were found in one of the studied strains after deep sequencing using both the fragment and mate-paired libraries. Additionally, inversions were confirmed by RFLP hybridization analysis. The discovered rearrangements were verified by PCR in all four newly sequenced strains in the study and in four additional strains of the same Beijing B0/W148 group. The other 32 MTB strains from different phylogenetic lineages were tested and revealed no inversions. We suggest that the initial largest inversion changed the orientation of the three megabase (Mb) segment of the chromosome, and the second one occurred in the previously inverted region and partly restored the orientation of the 2.1 Mb inner segment of the region. This is another remarkable example of genomic rearrangements in the MTB in addition to the recently published of large-scale duplications. The described cases suggest that large-scale genomic rearrangements in the currently circulating MTB isolates may occur more frequently than previously considered, and we hope that further studies will help to determine the exact mechanism of such events.


Subject(s)
Chromosome Inversion , Chromosomes, Bacterial , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use , China/epidemiology , Chromosome Mapping , DNA, Bacterial/classification , Drug Resistance, Multiple, Bacterial/drug effects , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Russia/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology
14.
PLoS One ; 8(2): e56577, 2013.
Article in English | MEDLINE | ID: mdl-23437175

ABSTRACT

Tuberculosis caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis (MTB) strains is a growing problem in many countries. The availability of the complete nucleotide sequences of several MTB genomes allows to use the comparative genomics as a tool to study the relationships of strains and differences in their evolutionary history including acquisition of drug-resistance. In our work, we sequenced three genomes of Russian MTB strains of different phenotypes--drug susceptible, MDR and XDR. Of them, MDR and XDR strains were collected in Tomsk (Siberia, Russia) during the local TB outbreak in 1998-1999 and belonged to rare KQ and KY families in accordance with IS6110 typing, which are considered endemic for Russia. Based on phylogenetic analysis, our isolates belonged to different genetic families, Beijing, Ural and LAM, which made the direct comparison of their genomes impossible. For this reason we performed their comparison in the broader context of all M. tuberculosis genomes available in GenBank. The list of unique individual non-synonymous SNPs for each sequenced isolate was formed by comparison with all SNPs detected within the same phylogenetic group. For further functional analysis, all proteins with unique SNPs were ascribed to 20 different functional classes based on Clusters of Orthologous Groups (COG). We have confirmed drug resistant status of our isolates that harbored almost all known drug-resistance associated mutations. Unique SNPs of an XDR isolate CTRI-4(XDR), belonging to a Beijing family were compared in more detail with SNPs of additional 14 Russian XDR strains of the same family. Only type specific mutations in genes of repair, replication and recombination system (COG category L) were found common within this group. Probably the other unique SNPs discovered in CTRI-4(XDR) may have an important role in adaptation of this microorganism to its surrounding and in escape from antituberculosis drugs treatment.


Subject(s)
Extensively Drug-Resistant Tuberculosis/genetics , Extensively Drug-Resistant Tuberculosis/microbiology , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Comparative Genomic Hybridization , DNA, Bacterial , Extensively Drug-Resistant Tuberculosis/epidemiology , Genome, Bacterial/drug effects , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Mycobacterium tuberculosis/isolation & purification , Phenotype , Phylogeny , Russia , Siberia
15.
J Clin Microbiol ; 48(10): 3681-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660213

ABSTRACT

The choice of adequate methods for epidemiological purposes remains a challenging problem in Neisseria gonorrhoeae molecular monitoring. In this study, the collection of geographically unrelated gonococci (n = 103) isolated in Russian clinics was comparably tested by (i) a traditional serotyping scheme, (ii) por typing, (iii) Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST), and (iv) multilocus sequence typing (MLST). It is shown that, according to sequencing data, a third of the strains carried new porB1 alleles, as well as tbpB ones, and more than half of the samples had new sequence types (STs) as determined by NG-MAST or MLST. The discriminatory power for each typing method was calculated by using the Hunter-Gaston discriminatory index, D. Commonly, modern nucleic acid-based typing methods (por typing, NG-MAST, and MLST) appeared to be more efficient than the classical serotyping scheme. While the traditional serotyping gave a D value of 0.82, the por typing, NG-MAST, and MLST approaches yielded D values of 0.97, 0.98, and 0.91, respectively. Each typing technique revealed the distribution of gonococci slightly correlated with their geographical sources. However, only the MLST method STs were highly associated with certain phenotypes. Although ST1594, ST1892, and ST6720 were typical for susceptible gonococci, ST1901 and ST6716 were undoubtedly associated with a multidrug-resistant phenotype. We conclude that every tested nucleic acid-based typing method is suitable for N. gonorrhoeae molecular surveillance. However, the MLST method seems to serve large-scale epidemiological purposes, whereas the NG-MAST and por typing approaches are more appropriate for the investigation of local outbreaks.


Subject(s)
Bacterial Typing Techniques/methods , Gonorrhea/epidemiology , Gonorrhea/microbiology , Neisseria gonorrhoeae/classification , Neisseria gonorrhoeae/genetics , DNA Fingerprinting/methods , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Humans , Molecular Epidemiology/methods , Molecular Sequence Data , Neisseria gonorrhoeae/isolation & purification , Porins/genetics , Russia/epidemiology , Sequence Analysis, DNA , Serotyping/methods , Transferrin-Binding Protein B/genetics
16.
FEMS Immunol Med Microbiol ; 59(2): 188-96, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20482629

ABSTRACT

Thirty urogenital Chlamydia trachomatis isolates collected in Moscow in 2005 were typed using newly developed molecular typing approaches: (1) multilocus sequence typing (MLST(7)) based on sequences of seven housekeeping genes (http://pubmlst.org/chlamydiales/), (2) MLST(5) based on the investigation of five target regions of the chlamydial genome and (3) ompA gene sequencing supplemented with three variable number tandem repeat (VNTR) loci of the genome. ompA typing divided all isolates into 11 groups with E serotype dominating, while MLST7, MLST5 and VNTR analysis divided them into eight, 20 and 18 groups, respectively. The discriminatory power of each method calculated using the Hunter-Gaston discriminatory index was found to be 0.83 for the ompA typing scheme, 0.82 for MLST(7) and 0.95 for MLST(5). A novel sequence type combining 13% of all strains was discovered, as well as new alleles of genes. This is the first study characterizing the genetic diversity of the urogenital C. trachomatis population in Central Russia using MLST. We conclude that the MLST(7) scheme is the best possible choice for global epidemiological purposes, whereas MLST(5) is more appropriate for tracing local outbreaks.


Subject(s)
Bacterial Typing Techniques/methods , Chlamydia trachomatis/classification , Chlamydia trachomatis/genetics , DNA Fingerprinting/methods , Lymphogranuloma Venereum/microbiology , Bacterial Outer Membrane Proteins/genetics , Chlamydia trachomatis/isolation & purification , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genotype , Humans , Moscow , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...