Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(14): 140403, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37084451

ABSTRACT

We show that non-Hermitian Ginibre random matrix behaviors emerge in spatially extended many-body quantum chaotic systems in the space direction, just as Hermitian random matrix behaviors emerge in chaotic systems in the time direction. Starting with translational invariant models, which can be associated with dual transfer matrices with complex-valued spectra, we show that the linear ramp of the spectral form factor necessitates that the dual spectra have nontrivial correlations, which in fact fall under the universality class of the Ginibre ensemble, demonstrated by computing the level spacing distribution and the dissipative spectral form factor. As a result of this connection, the exact spectral form factor for the Ginibre ensemble can be used to universally describe the spectral form factor for translational invariant many-body quantum chaotic systems in the scaling limit where t and L are large, while the ratio between L and L_{Th}, the many-body Thouless length is fixed. With appropriate variations of Ginibre models, we analytically demonstrate that our claim generalizes to models without translational invariance as well. The emergence of the Ginibre ensemble is a genuine consequence of the strongly interacting and spatially extended nature of the quantum chaotic systems we consider, unlike the traditional emergence of Hermitian random matrix ensembles.

2.
Nat Commun ; 13(1): 7484, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36470877

ABSTRACT

We study the consequences of having translational invariance in space and time in many-body quantum chaotic systems. We consider ensembles of random quantum circuits as minimal models of translational invariant many-body quantum chaotic systems. We evaluate the spectral form factor as a sum over many-body Feynman diagrams in the limit of large local Hilbert space dimension q. At sufficiently large t, diagrams corresponding to rigid translations dominate, reproducing the random matrix theory (RMT) behaviour. At finite t, we show that translational invariance introduces additional mechanisms via two novel Feynman diagrams which delay the emergence of RMT. Our analytics suggests the existence of exact scaling forms which describe the approach to RMT behavior in the scaling limit where both t and L are large while the ratio between L and LTh(t), the many-body Thouless length, is fixed. We numerically demonstrate, with simulations of two distinct circuit models, that the resulting scaling functions are universal in the scaling limit.

3.
Phys Biol ; 18(6)2021 08 12.
Article in English | MEDLINE | ID: mdl-34186523

ABSTRACT

We introduce a Reed-Frost epidemic model with recursive contact tracing and asymptomatic transmission. This generalizes the branching-process model introduced by the authors in a previous work (Bulchandani et al 2021Phys. Biol.18045004) to finite populations and general contact networks. We simulate the model numerically for two representative examples, the complete graph and the square lattice. On both networks, we observe clear signatures of a contact-tracing phase transition from an 'epidemic phase' to an 'immune phase' as contact-network coverage is increased. We verify that away from the singular line of perfect tracing, the finite-size scaling of the contact-tracing phase transition on each network lies in the corresponding percolation universality class. Finally, we use the model to quantify the efficacy of recursive contact-tracing in regimes where epidemic spread is not contained.


Subject(s)
COVID-19/epidemiology , Contact Tracing/methods , Immune System , SARS-CoV-2 , Algorithms , Basic Reproduction Number , COVID-19/virology , Computer Simulation , Disease Outbreaks , Epidemics , Humans , Models, Theoretical , Probability
4.
Phys Biol ; 18(4)2021 06 23.
Article in English | MEDLINE | ID: mdl-33827059

ABSTRACT

A population can be immune to epidemics even if not all of its individual members are immune to the disease, so long as sufficiently many are immune-this is the traditional notion of herd immunity. In the smartphone era a population can be immune to epidemicseven if not a single one of its members is immune to the disease-a notion we call 'digital herd immunity', which is similarly an emergent characteristic of the population. This immunity arises because contact-tracing protocols based on smartphone capabilities can lead to highly efficient quarantining of infected population members and thus the extinguishing of nascent epidemics. When the disease characteristics are favorable and smartphone usage is high enough, the population is in this immune phase. As usage decreases there is a novel 'contact-tracing phase transition' to an epidemic phase. We present and study a simple branching-process model for COVID-19 and show that digital immunity is possible regardless of the proportion of non-symptomatic transmission.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , SARS-CoV-2/immunology , Contact Tracing , Humans , Immunity, Herd , Mobile Applications , Models, Biological , Smartphone , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...