Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 75(4): 412-22, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20618129

ABSTRACT

Coherent processes in an initial phase of charge transfer in reaction centers (RCs) of the triple mutant S(L178)K/G(M203)D/L(M214)H of Rhodobacter sphaeroides were investigated by difference (light - dark) absorption spectroscopy with 18 fsec time resolution. Electron transfer in the B cofactor branch is activated in this mutant, while the A-branch electron transfer is slowed in comparison with native RCs of Rba. sphaeroides. A bulk of absorption difference spectra was analyzed in the 940-1060 nm range (stimulated emission of excited bacteriochlorophyll dimer P* and absorption of bacteriochlorophyll anions B(A)(-) and beta(-), where beta is a bacteriochlorophyll substituting the native bacteriopheophytin H(A)) and in the 735-775 nm range (bleaching of the absorption band of the bacteriopheophytin H(B) in the B-branch) in the -0.1 to 4 psec range of delays with respect to the moment of photoexcitation of P at 870 nm. Spectra were measured at 293 and 90 K. The kinetics of P* stimulated emission at 940 nm shows its decay with a time constant of approximately 14 psec at 90 K and approximately 18 psec at 293 K, which is accompanied by oscillations with a frequency of approximately 150 cm(-1). A weak absorption band is found at 1018 nm that is formed approximately 100 fsec after excitation of P and reflects the electron transfer from P* to beta and/or B(A) with accumulation of the P(+)beta(-) and/or P(+)B(A)(-) states. The kinetics of DeltaA at 1018 nm contains the oscillations at approximately 150 cm(-1) and distinct low-frequency oscillations at 20-100 cm(-1); also, the amplitude of the oscillations at 150 cm(-1) is much smaller at 293 than at 90 K. The oscillations in the kinetics of the 1018 nm band do not contain a 32 cm(-1) mode that is characteristic for native Rba. sphaeroides RCs having water molecule HOH55 in their structure. The DeltaA kinetics at 751 nm reflects the electron transfer to H(B) with formation of the P(+)H(B)(-) state. The oscillatory part of this kinetics has the form of a single peak with a maximum at ~50 fsec completely decaying at ~200 fsec, which might reflect a reversible electron transfer to the B-branch. The results are analyzed in terms of coherent nuclear wave packet motion induced in the P* excited state by femtosecond light pulses, of an influence of the incorporated mutations on the mutual position of the energy levels of charge separated states, and of the role of water HOH55 in the dynamics of the initial electron transfer.


Subject(s)
Bacterial Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Rhodobacter sphaeroides/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Bacteriochlorophylls/chemistry , Electron Transport , Kinetics , Mutation , Photosynthetic Reaction Center Complex Proteins/genetics , Time Factors
2.
Biochemistry (Mosc) ; 74(8): 846-54, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19817684

ABSTRACT

Difference absorption spectroscopy with temporal resolution of approximately 20 fsec was used to study the primary phase of charge separation in isolated reaction centers (RCs) of Chloroflexus aurantiacus at 90 K. An ensemble of difference (light-minus-dark) absorption spectra in the 730-795 nm region measured at -0.1 to 4 psec delays relative to the excitation pulse was analyzed. Comparison with analogous data for RCs of HM182L mutant of Rhodobacter sphaeroides having the same pigment composition identified the 785 nm absorption band as the band of bacteriopheophytin Phi(B) in the B-branch. By study the bleaching of this absorption band due to formation of Phi(B)(-), it was found that a coherent electron transfer from P* to the B-branch occurs with a very small delay of 10-20 fsec after excitation of dimer bacteriochlorophyll P. Only at 120 fsec delay electron transfer from P* to the A-branch occurs with the formation of bacteriochlorophyll anion B(A)(-) absorption band at 1028 nm and the appearance of P* stimulated emission at 940 nm, as also occurs in native RCs of Rb. sphaeroides. It is concluded that a nuclear wave packet motion on the potential energy surface of P* after a 20-fsec light pulse excitation leads to the coherent formation of the P(+)Phi(B)(-) and P(+)B(A)(-) states.


Subject(s)
Chloroflexus/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Chloroflexus/metabolism , Electron Transport , Kinetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL