Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 43(2): 199-204, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18246513

ABSTRACT

This study sought to evaluate the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)), the gas of greatest environmental concern to the poultry industry. Four plant species (Norway spruce, Spike hybrid poplar, Streamco willow, and hybrid willow) were planted on eight commercial farms from 2003 to 2004. Because temperature (T) can be a stressor for trees, T was monitored in 2005 with data loggers among the trees in front of the exhaust fans (11.4 to 17.7 m) and at a control distance away from the fans (48 m) during all four seasons in Pennsylvania. Norway spruce (Picea abies) foliage samples were taken in August 2005 from one turkey and two layer farms for dry matter (DM) and nitrogen (N) analysis. The two layer farms had both Norway spruce and Spike hybrid poplar (Populus deltoides x Populus nigra) plantings sampled as well allowing comparisons of species and the effect of plant location near the fans versus a control distance away. Proximity to the fans had a clear effect on spruce foliar N with greater concentrations downwind of the fans than at control distances (3.03 vs. 1.88%; P < or = 0.0005). Plant location was again a significant factor for foliar N of both poplar and spruce on the two farms with both species showing greater N adjacent to the fans compared to the controls (3.75 vs. 2.32%; P < or = 0.0001). Pooled foliar DM of both plants was also greater among those near the fans (56.17, fan vs. 44.67%, control; P < or = 0.005). Species differences were also significant showing the potential of poplar to retain greater foliar N than spruce (3.52 vs. 2.55%; P < or = 0.001) with less DM (46.00 vs. 54.83%; P < or = 0.05) in a vegetative buffer setting. The results indicated plants were not stressed by the T near exhaust fans with mean seasonal T (13.04 vs. 13.03 degrees C, respectively) not significantly different from controls. This suggested poultry house exhaust air among the trees near the fans would not result in dormancy stressors on the plants compared to controls away from the fans.


Subject(s)
Air Pollutants/metabolism , Ammonia/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Trees/metabolism , Air Pollutants/analysis , Air Pollution/prevention & control , Ammonia/analysis , Ammonia/pharmacology , Animals , Biomass , Crosses, Genetic , Nitrogen/analysis , Nitrogen/metabolism , Photosynthesis/drug effects , Picea/metabolism , Poultry , Salix/metabolism , Seasons , Species Specificity , Temperature , Trees/genetics
2.
J Environ Sci Health B ; 43(1): 96-103, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18161579

ABSTRACT

This study evaluated the potential of trees planted around commercial poultry farms to trap ammonia (NH(3)) and dust or particulate matter (PM). Norway spruce, Spike hybrid poplar, hybrid willow, and Streamco purpleosier willow were planted on five commercial farms from 2003 to 2004. Plant foliage was sampled in front of the exhaust fans and at a control distance away from the fans on one turkey, two laying hen, and two broiler chicken farms between June and July 2006. Samples were analyzed for dry matter (DM), nitrogen (N), and PM content. In addition, NH(3) concentrations were measured downwind of the exhaust fans among the trees and at a control distance using NH(3) passive dosi-tubes. Foliage samples were taken and analyzed separately based on plant species. The two layer farms had both spruce and poplar plantings whereas the two broiler farms had hybrid willow and Streamco willow plantings which allowed sampling and species comparisons with the effect of plant location (control vs. fan). The results showed that NH(3) concentration h(- 1) was reduced by distance from housing fans (P < or = 0.0001), especially between 0 m (12.01 ppm), 11.4 m (2.59 ppm), 15 m (2.03 ppm), and 30 m (0.31 ppm). Foliar N of plants near the fans was greater than those sampled away from the fans for poplar (3.87 vs. 2.56%; P < or = 0.0005) and hybrid willow (3.41 vs. 3.02%; P < or = 0.05). The trends for foliar N in spruce (1.91 vs. 1.77%; P = 0.26) and Streamco willow (3.85 vs. 3.33; P = 0.07) were not significant. Pooling results of the four plant species indicated greater N concentration from foliage sampled near the fans than of that away from the fans (3.27 vs. 2.67%; P < or = 0.0001). Foliar DM concentration was not affected by plant location, and when pooled the foliar DM of the four plant species near the fans was 51.3% in comparison with 48.5% at a control distance. There was a significant effect of plant location on foliar N and DM on the two layer farms with greater N and DM adjacent to fans than at a control distance (2.95 vs. 2.15% N and 45.4 vs. 38.2% DM, respectively). There were also significant plant species effects on foliar N and DM with poplar retaining greater N (3.22 vs. 1.88%) and DM (43.7 vs. 39.9%) than spruce. The interaction of location by species (P < or = 0.005) indicated that poplar was more responsive in terms of foliar N, but less responsive for DM than spruce. The effect of location and species on foliar N and DM were not clear among the two willow species on the broiler farms. Plant location had no effect on plant foliar PM weight, but plant species significantly influenced the ability of the plant foliage to trap PM with spruce and hybrid willow showing greater potential than poplar and Streamco willow for PM(2.5)(0.0054, 0.0054, 0.0005, and 0.0016 mg cm(- 2); P < or = 0.05) and total PM (0.0309, 0.0102, 0.0038, and 0.0046 mg cm(- 2), respectively; P < or = 0.001). Spruce trapped more dust compared to the other three species (hybrid willow, poplar, and Streamco willow) for PM(10) (0.0248 vs. 0.0036 mg cm(- 2); P < or = 0.0001) and PM(> 10) (0.0033 vs. 0.0003 mg cm(- 2); P = 0.052). This study indicates that poplar, hybrid willow, and Streamco willow are appropriate species to absorb poultry house aerial NH(3)-N, whereas spruce and hybrid willow are effective traps for dust and its associated odors.


Subject(s)
Ammonia/adverse effects , Nitrogen/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Plants/metabolism , Air Pollutants/adverse effects , Air Pollutants/analysis , Ammonia/analysis , Animals , Biomass , Dust/analysis , Particulate Matter , Photosynthesis/drug effects , Plant Development , Plant Leaves/drug effects , Plant Leaves/growth & development , Plants/drug effects , Poultry , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...