Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Circ Genom Precis Med ; : e004569, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953211

ABSTRACT

BACKGROUND: Brugada syndrome is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging, and ≈79% of SCN5A missense variants in ClinVar are currently classified as variants of uncertain significance. Automated patch clamp technology enables high-throughput functional studies of ion channel variants and can provide evidence for variant reclassification. METHODS: An in vitro SCN5A-Brugada syndrome automated patch clamp assay was generated and independently studied at Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute. The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. Odds of pathogenicity values were derived from the experimental results according to ClinGen Sequence Variant Interpretation recommendations. The calibrated assay was then used to study SCN5A variants of uncertain significance observed in 4 families with Brugada syndrome and other arrhythmia phenotypes associated with SCN5A loss-of-function. RESULTS: Variant channel parameters generated independently at the 2 research sites showed strong correlations, including peak INa density (R2=0.86). The assay accurately distinguished benign controls (24/25 concordant variants) from pathogenic controls (23/24 concordant variants). Odds of pathogenicity values yielded 0.042 for normal function and 24.0 for abnormal function, corresponding to strong evidence for both American College of Medical Genetics and Genomics/Association for Molecular Pathology benign and pathogenic functional criteria (BS3 and PS3, respectively). Application of the assay to 4 clinical SCN5A variants of uncertain significance revealed loss-of-function for 3/4 variants, enabling reclassification to likely pathogenic. CONCLUSIONS: This validated high-throughput assay provides clinical-grade functional evidence to aid the classification of current and future SCN5A-Brugada syndrome variants of uncertain significance.

2.
Nat Aging ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834882

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.

3.
Space Sci Rev ; 220(4): 37, 2024.
Article in English | MEDLINE | ID: mdl-38756703

ABSTRACT

The Lunar Environment heliospheric X-ray Imager (LEXI) is a wide field-of-view soft X-ray telescope developed to study solar wind-magnetosphere coupling. LEXI is part of the Blue Ghost 1 mission comprised of 10 payloads to be deployed on the lunar surface. LEXI monitors the dayside magnetopause position and shape as a function of time by observing soft X-rays (0.1-2 keV) emitted from solar wind charge-exchange between exospheric neutrals and high charge-state solar wind plasma in the dayside magnetosheath. Measurements of the shape and position of the magnetopause are used to test temporal models of meso- and macro-scale magnetic reconnection. To image the boundary, LEXI employs lobster-eye optics to focus X-rays to a microchannel plate detector with a 9.1×∘9.1∘ field of view.

4.
J Am Heart Assoc ; 13(6): e031029, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38471835

ABSTRACT

BACKGROUND: Recurrence after atrial fibrillation (AF) ablation remains common. We evaluated the association between recurrence and levels of biomarkers of cardiac remodeling, and their ability to improve recurrence prediction when added to a clinical prediction model. METHODS AND RESULTS: Blood samples collected before de novo catheter ablation were analyzed. Levels of bone morphogenetic protein-10, angiopoietin-2, fibroblast growth factor-23, insulin-like growth factor-binding protein-7, myosin-binding protein C3, growth differentiation factor-15, interleukin-6, N-terminal pro-brain natriuretic peptide, and high-sensitivity troponin T were measured. Recurrence was defined as ≥30 seconds of an atrial arrhythmia 3 to 12 months postablation. Multivariable logistic regression was performed using biomarker levels along with clinical covariates: APPLE score (Age >65 years, Persistent AF, imPaired eGFR [<60 ml/min/1.73m2], LA diameter ≥43 mm, EF <50%; which includes age, left atrial diameter, left ventricular ejection fraction, persistent atrial fibrillation, and estimated glomerular filtration rate), preablation rhythm, sex, height, body mass index, presence of an implanted continuous monitor, year of ablation, and additional linear ablation. A total of 1873 participants were included. A multivariable logistic regression showed an association between recurrence and levels of angiopoietin-2 (odds ratio, 1.08 [95% CI, 1.02-1.15], P=0.007) and interleukin-6 (odds ratio, 1.02 [95% CI, 1.003-1.03]; P=0.02). The area under the receiver operating characteristic curve of a model that only contained clinical predictors was 0.711. The addition of any of the 9 studied biomarkers to the predictive model did not result in a statistically significant improvement in the area under the receiver operating characteristic curve. CONCLUSIONS: Higher angiopoietin-2 and interleukin-6 levels were associated with recurrence after atrial fibrillation ablation in multivariable modeling. However, the addition of biomarkers to a clinical prediction model did not significantly improve recurrence prediction.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Catheter Ablation , Humans , Aged , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Angiopoietin-2 , Interleukin-6 , Models, Statistical , Stroke Volume , Ventricular Remodeling , Risk Factors , Prognosis , Recurrence , Ventricular Function, Left , Biomarkers , Catheter Ablation/adverse effects , Catheter Ablation/methods , Treatment Outcome
5.
medRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405916

ABSTRACT

Background: Atrial Fibrillation (AF) is a common and clinically heterogeneous arrythmia. Machine learning (ML) algorithms can define data-driven disease subtypes in an unbiased fashion, but whether the AF subgroups defined in this way align with underlying mechanisms, such as high polygenic liability to AF or inflammation, and associate with clinical outcomes is unclear. Methods: We identified individuals with AF in a large biobank linked to electronic health records (EHR) and genome-wide genotyping. The phenotypic architecture in the AF cohort was defined using principal component analysis of 35 expertly curated and uncorrelated clinical features. We applied an unsupervised co-clustering machine learning algorithm to the 35 features to identify distinct phenotypic AF clusters. The clinical inflammatory status of the clusters was defined using measured biomarkers (CRP, ESR, WBC, Neutrophil %, Platelet count, RDW) within 6 months of first AF mention in the EHR. Polygenic risk scores (PRS) for AF and cytokine levels were used to assess genetic liability of clusters to AF and inflammation, respectively. Clinical outcomes were collected from EHR up to the last medical contact. Results: The analysis included 23,271 subjects with AF, of which 6,023 had available genome-wide genotyping. The machine learning algorithm identified 3 phenotypic clusters that were distinguished by increasing prevalence of comorbidities, particularly renal dysfunction, and coronary artery disease. Polygenic liability to AF across clusters was highest in the low comorbidity cluster. Clinically measured inflammatory biomarkers were highest in the high comorbid cluster, while there was no difference between groups in genetically predicted levels of inflammatory biomarkers. Subgroup assignment was associated with multiple clinical outcomes including mortality, stroke, bleeding, and use of cardiac implantable electronic devices after AF diagnosis. Conclusion: Patient subgroups identified by unsupervised clustering were distinguished by comorbidity burden and associated with risk of clinically important outcomes. Polygenic liability to AF across clusters was greatest in the low comorbidity subgroup. Clinical inflammation, as reflected by measured biomarkers, was lowest in the subgroup with lowest comorbidities. However, there were no differences in genetically predicted levels of inflammatory biomarkers, suggesting associations between AF and inflammation is driven by acquired comorbidities rather than genetic predisposition.

6.
Genome Med ; 16(1): 13, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38229148

ABSTRACT

BACKGROUND: Sudden unexpected death in children is a tragic event. Understanding the genetics of sudden death in the young (SDY) enables family counseling and cascade screening. The objective of this study was to characterize genetic variation in an SDY cohort using whole genome sequencing. METHODS: The SDY Case Registry is a National Institutes of Health/Centers for Disease Control and Prevention surveillance effort to discern the prevalence, causes, and risk factors for SDY. The SDY Case Registry prospectively collected clinical data and DNA biospecimens from SDY cases < 20 years of age. SDY cases were collected from medical examiner and coroner offices spanning 13 US jurisdictions from 2015 to 2019. The cohort included 211 children (median age 0.33 year; range 0-20 years), determined to have died suddenly and unexpectedly and from whom DNA biospecimens for DNA extractions and next-of-kin consent were ascertained. A control cohort consisted of 211 randomly sampled, sex- and ancestry-matched individuals from the 1000 Genomes Project. Genetic variation was evaluated in epilepsy, cardiomyopathy, and arrhythmia genes in the SDY and control cohorts. American College of Medical Genetics/Genomics guidelines were used to classify variants as pathogenic or likely pathogenic. Additionally, pathogenic and likely pathogenic genetic variation was identified using a Bayesian-based artificial intelligence (AI) tool. RESULTS: The SDY cohort was 43% European, 29% African, 3% Asian, 16% Hispanic, and 9% with mixed ancestries and 39% female. Six percent of the cohort was found to harbor a pathogenic or likely pathogenic genetic variant in an epilepsy, cardiomyopathy, or arrhythmia gene. The genomes of SDY cases, but not controls, were enriched for rare, potentially damaging variants in epilepsy, cardiomyopathy, and arrhythmia-related genes. A greater number of rare epilepsy genetic variants correlated with younger age at death. CONCLUSIONS: While damaging cardiomyopathy and arrhythmia genes are recognized contributors to SDY, we also observed an enrichment in epilepsy-related genes in the SDY cohort and a correlation between rare epilepsy variation and younger age at death. These findings emphasize the importance of considering epilepsy genes when evaluating SDY.


Subject(s)
Cardiomyopathies , Epilepsy , Child , Humans , Female , Infant , Male , Death, Sudden, Cardiac/etiology , Artificial Intelligence , Bayes Theorem , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/genetics , Cardiomyopathies/genetics , Cardiomyopathies/complications , Epilepsy/genetics , DNA , Genetic Testing
7.
Res Sq ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37790303

ABSTRACT

Rare genetic diseases are typically studied in referral populations, resulting in underdiagnosis and biased assessment of penetrance and phenotype. To address this, we developed a generalizable method of genotype inference based on distant relatedness and deployed this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. We identified 9 LQT5 families referred to a single specialty clinic, each carrying p.Asp76Asn, the most common LQT5 variant. We uncovered recent common ancestry and a single shared haplotype among probands. Application to a non-referral population of 69,819 BioVU biobank subjects identified 22 additional subjects sharing this haplotype, subsequently confirmed to carry p.Asp76Asn. Referral and non-referral carriers had prolonged QTc compared to controls, and, among carriers, QTc polygenic score additively associated with QTc prolongation. Thus, our novel analysis of shared chromosomal segments identified undiagnosed cases of genetic disease and refined the understanding of LQT5 penetrance and phenotype.

8.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834023

ABSTRACT

The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.


Subject(s)
Actinin , Myofibrils , Humans , Actinin/genetics , Actinin/metabolism , Connectin/genetics , Connectin/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Sarcomeres/metabolism
9.
JACC Case Rep ; 16: 101878, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37396334

ABSTRACT

Rare variants in TTN are the most common monogenic cause of early-onset atrial fibrillation and dilated cardiomyopathy. Whereas cardiac sarcoidosis is very underdiagnosed, a common presentation can be ventricular arrhythmias. This report presents a patient with a likely pathogenic TTN variant and cardiac sarcoidosis. (Level of Difficulty: Intermediate.).

10.
JACC Clin Electrophysiol ; 9(7 Pt 2): 1147-1157, 2023 07.
Article in English | MEDLINE | ID: mdl-37495323

ABSTRACT

BACKGROUND: Experimental evidence suggests genetic variation in 4q25/PITX2 modulates pulmonary vein (PV) myocardial sleeve length. Although PV sleeves are the main target of atrial fibrillation (AF) ablation, little is known about the association between different PV sleeve characteristics with ablation outcomes. OBJECTIVES: This study sought to evaluate the association between clinical and genetic (4q25) risk factors with PV sleeve length in humans, and to evaluate the association between PV sleeve length and recurrence after AF ablation. METHODS: In a prospective, observational study of patients undergoing de novo AF ablation, PV sleeve length was measured using electroanatomic voltage mapping before ablation. The sentinel 4q25 AF susceptibility single nucleotide polymorphism, rs2200733, was genotyped. The primary analysis tested the association between clinical and genetic (4q25) risk factors with PV sleeve length using a multivariable linear regression model. Covariates included age, sex, body mass index, height, and persistent AF. The association between PV sleeve length and atrial arrhythmia recurrence (>30 seconds) was tested using a multivariable Cox proportional hazards model. RESULTS: Between 2014 and 2019, 197 participants were enrolled (median age 63 years [IQR: 55 to 70 years], 133 male [67.5%]). In multivariable modeling, men were found to have PV sleeves 2.94 mm longer than women (95% CI: 0.99-4.90 mm; P < 0.001). Sixty participants (30.5%) had one 4q25 risk allele and 6 (3.1%) had 2 alleles. There was no association between 4q25 genotype and PV sleeve length. Forty-six participants (23.4%) experienced arrhythmia recurrence within 3 to 12 months, but there was no association between recurrence and PV sleeve length. CONCLUSIONS: Common genetic variation at 4q25 was not associated with PV sleeve length and PV sleeve length was not associated with ablation outcomes. Men did have longer PV sleeves than women, but more research is needed to define the potential clinical significance of this observation.


Subject(s)
Atrial Fibrillation , Pulmonary Veins , Female , Humans , Male , Middle Aged , Atrial Fibrillation/genetics , Atrial Fibrillation/surgery , Genotype , Prospective Studies , Pulmonary Veins/surgery , Risk Factors , Aged , Homeobox Protein PITX2
11.
medRxiv ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37163006

ABSTRACT

Importance: The diagnosis and study of rare genetic disease is often limited to referral populations, leading to underdiagnosis and a biased assessment of penetrance and phenotype. Objective: To develop a generalizable method of genotype inference based on distant relatedness and to deploy this to identify undiagnosed Type 5 Long QT Syndrome (LQT5) rare variant carriers in a non-referral population. Participants: We identified 9 LQT5 probands and 3 first-degree relatives referred to a single Genetic Arrhythmia clinic, each carrying D76N (p.Asp76Asn), the most common variant implicated in LQT5. The non-referral population consisted of 69,879 ancestry-matched subjects in BioVU, a large biobank that links electronic health records to dense array data. Participants were enrolled from 2007-2022. Data analysis was performed in 2022. Exposures: We developed and applied a novel approach to genotype inference (Distant Relatedness for Identification and Variant Evaluation, or DRIVE) to identify shared, identical-by-descent (IBD) large chromosomal segments in array data. Main Outcomes and Measures: We sought to establish genetic relatedness among the probands and to use genomic segments underlying D76N to identify other potential carriers in BioVU. We then further studied the role of D76N in LQT5 pathogenesis. Results: Genetic reconstruction of pedigrees and distant relatedness detection among clinic probands using DRIVE revealed shared recent common ancestry and identified a single long shared haplotype. Interrogation of the non-referral population in BioVU identified a further 23 subjects sharing this haplotype, and sequencing confirmed D76N carrier status in 22, all previously undiagnosed with LQT5. The QTc was prolonged in D76N carriers compared to BioVU controls, with 40% penetrance of QTc ≥ 480 msec. Among D76N carriers, a QTc polygenic score was additively associated with QTc prolongation. Conclusions and Relevance: Detection of IBD shared chromosomal segments around D76N enabled identification of distantly related and previously undiagnosed rare-variant carriers, demonstrated the contribution of polygenic risk to monogenic disease penetrance, and further established LQT5 as a primary arrhythmia disorder. Analysis of shared chromosomal regions spanning disease-causing mutations can identify undiagnosed cases of genetic diseases.

12.
Heart Rhythm ; 20(8): 1158-1166, 2023 08.
Article in English | MEDLINE | ID: mdl-37164047

ABSTRACT

BACKGROUND: Truncating variants in filamin C (FLNC) can cause arrhythmogenic cardiomyopathy (ACM) through haploinsufficiency. Noncanonical splice-altering variants may contribute to this phenotype. OBJECTIVE: The purpose of this study was to investigate the clinical and functional consequences of a recurrent FLNC intronic variant of uncertain significance (VUS), c.970-4A>G. METHODS: Clinical data in 9 variant heterozygotes from 4 kindreds were obtained from 5 tertiary health care centers. We used in silico predictors and functional studies with peripheral blood and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Isolated RNA was studied by reverse transcription polymerase chain reaction. iPSC-CMs were further characterized at baseline and after nonsense-mediated decay (NMD) inhibition, using quantitative polymerase chain reaction (qPCR), RNA-sequencing, and cellular electrophysiology. American College of Medical Genetics and Genomics (ACMG) criteria were used to adjudicate variant pathogenicity. RESULTS: Variant heterozygotes displayed a spectrum of disease phenotypes, spanning from mild ventricular dysfunction with palpitations to severe ventricular arrhythmias requiring device shocks or progressive cardiomyopathy requiring heart transplantation. Consistent with in silico predictors, the c.970-4A>G FLNC variant activated a cryptic splice acceptor site, introducing a 3-bp insertion containing a premature termination codon. NMD inhibition upregulated aberrantly spliced transcripts by qPCR and RNA-sequencing. Patch clamp studies revealed irregular spontaneous action potentials, increased action potential duration, and increased sodium late current in proband-derived iPSC-CMs. These findings fulfilled multiple ACMG criteria for pathogenicity. CONCLUSION: Clinical, in silico, and functional evidence support the prediction that the intronic c.970-4A>G VUS disrupts splicing and drives ACM, enabling reclassification from VUS to pathogenic.


Subject(s)
Cardiomyopathies , Humans , Cardiomyopathies/genetics , Codon, Nonsense , Filamins/genetics , Mutation , Myocytes, Cardiac , RNA/genetics
13.
medRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034657

ABSTRACT

Background: Sudden unexpected death in children is a tragic event. Understanding the genetics of sudden death in the young (SDY) enables family counseling and cascade screening. The objective of this study was to characterize genetic variation in an SDY cohort using whole genome sequencing. Methods: The SDY Case Registry is a National Institutes of Health/Centers for Disease Control surveillance effort to discern the prevalence, causes, and risk factors for SDY. The SDY Case Registry prospectively collected clinical data and DNA biospecimens from SDY cases <20 years of age. SDY cases were collected from medical examiner and coroner offices spanning 13 US jurisdictions from 2015-2019. The cohort included 211 children (mean age 1 year; range 0-20 years), determined to have died suddenly and unexpectedly and in whom DNA biospecimens and next-of-kin consent were ascertained. A control cohort consisted of 211 randomly sampled, sex-and ancestry-matched individuals from the 1000 Genomes Project. Genetic variation was evaluated in epilepsy, cardiomyopathy and arrhythmia genes in the SDY and control cohorts. American College of Medical Genetics/Genomics guidelines were used to classify variants as pathogenic or likely pathogenic. Additionally, genetic variation predicted to be damaging was identified using a Bayesian-based artificial intelligence (AI) tool. Results: The SDY cohort was 42% European, 30% African, 17% Hispanic, and 11% with mixed ancestries, and 39% female. Six percent of the cohort was found to harbor a pathogenic or likely pathogenic genetic variant in an epilepsy, cardiomyopathy or arrhythmia gene. The genomes of SDY cases, but not controls, were enriched for rare, damaging variants in epilepsy, cardiomyopathy and arrhythmia-related genes. A greater number of rare epilepsy genetic variants correlated with younger age at death. Conclusions: While damaging cardiomyopathy and arrhythmia genes are recognized contributors to SDY, we also observed an enrichment in epilepsy-related genes in the SDY cohort, and a correlation between rare epilepsy variation and younger age at death. These findings emphasize the importance of considering epilepsy genes when evaluating SDY.

14.
bioRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778406

ABSTRACT

Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-seq data in GTEx v8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased WGS data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.

15.
medRxiv ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38196587

ABSTRACT

Brugada Syndrome (BrS) is an inheritable arrhythmia condition that is associated with rare, loss-of-function variants in the cardiac sodium channel gene, SCN5A. Interpreting the pathogenicity of SCN5A missense variants is challenging and ~79% of SCN5A missense variants in ClinVar are currently classified as Variants of Uncertain Significance (VUS). An in vitro SCN5A-BrS automated patch clamp assay was generated for high-throughput functional studies of NaV1.5. The assay was independently studied at two separate research sites - Vanderbilt University Medical Center and Victor Chang Cardiac Research Institute - revealing strong correlations, including peak INa density (R2=0.86). The assay was calibrated according to ClinGen Sequence Variant Interpretation recommendations using high-confidence variant controls (n=49). Normal and abnormal ranges of function were established based on the distribution of benign variant assay results. The assay accurately distinguished benign controls (24/25) from pathogenic controls (23/24). Odds of Pathogenicity values derived from the experimental results yielded 0.042 for normal function (BS3 criterion) and 24.0 for abnormal function (PS3 criterion), resulting in up to strong evidence for both ACMG criteria. The calibrated assay was then used to study SCN5A VUS observed in four families with BrS and other arrhythmia phenotypes associated with SCN5A loss-of-function. The assay revealed loss-of-function for three of four variants, enabling reclassification to likely pathogenic. This validated APC assay provides clinical-grade functional evidence for the reclassification of current VUS and will aid future SCN5A-BrS variant classification.

16.
Circ Arrhythm Electrophysiol ; 15(10): e010713, 2022 10.
Article in English | MEDLINE | ID: mdl-36166682

ABSTRACT

BACKGROUND: Experimental data suggest ryanodine receptor-mediated intracellular calcium leak is a mechanism for atrial fibrillation (AF), but evidence in humans is still needed. Propafenone is composed of two enantiomers that are equally potent sodium-channel blockers; however, (R)-propafenone is an ryanodine receptor inhibitor whereas (S)-propafenone is not. This study tested the hypothesis that ryanodine receptor inhibition with (R)-propafenone prevents induction of AF compared to (S)-propafenone or placebo in patients referred for AF ablation. METHODS: Participants were randomized 4:4:1 to a one-time intravenous dose of (R)-propafenone, (S)-propafenone, or placebo. The study drug was given at the start of the procedure and an AF induction protocol using rapid atrial pacing was performed before ablation. The primary endpoint was 30 s of AF or atrial flutter. RESULTS: A total of 193 participants were enrolled and 165 (85%) completed the study protocol (median age: 63 years, 58% male, 95% paroxysmal AF). Sustained AF and/or atrial flutter was induced in 60 participants (84.5%) receiving (R)-propafenone, 60 (80.0%) receiving (S)-propafenone group, and 12 (63.2%) receiving placebo. Atrial flutter occurred significantly more often in the (R)-propafenone (N=23, 32.4%) and (S)-propafenone (N=26, 34.7%) groups compared to placebo (N=1, 5.3%, P=0.029). There was no significant difference between (R)-propafenone and (S)-propafenone for the primary outcome of AF and/or atrial flutter induction in univariable (P=0.522) or multivariable analysis (P=0.199, adjusted for age and serum drug level). CONCLUSIONS: There is no difference in AF inducibility between (R)-propafenone and (S)-propafenone at clinically relevant concentrations. These results are confounded by a high rate of inducible atrial flutter due to sodium-channel blockade. REGISTRATION: https://clinicaltrials.gov; Unique Identifier: NCT02710669.


Subject(s)
Atrial Fibrillation , Atrial Flutter , Humans , Male , Middle Aged , Female , Propafenone/adverse effects , Ryanodine Receptor Calcium Release Channel , Atrial Fibrillation/diagnosis , Atrial Fibrillation/prevention & control , Atrial Fibrillation/drug therapy , Atrial Flutter/diagnosis , Atrial Flutter/prevention & control , Calcium/metabolism , Sodium , Anti-Arrhythmia Agents/therapeutic use
17.
Circ Arrhythm Electrophysiol ; 15(9): e010954, 2022 09.
Article in English | MEDLINE | ID: mdl-36074954

ABSTRACT

BACKGROUND: Data on atrial fibrillation (AF) ablation and outcomes are limited in patients with congenital heart disease (CHD). We aimed to investigate the characteristics of patients with CHD presenting for AF ablation and their outcomes. METHODS: A multicenter, retrospective analysis was performed of patients with CHD undergoing AF ablation between 2004 and 2020 at 13 participating centers. The severity of CHD was classified using 2014 Pediatric and Congenital Electrophysiology Society/Heart Rhythm Society guidelines. Clinical data were collected. One-year complete procedural success was defined as freedom from atrial tachycardia or AF in the absence of antiarrhythmic drugs or including previously failed antiarrhythmic drugs (partial success). RESULTS: Of 240 patients, 127 (53.4%) had persistent AF, 62.5% were male, and mean age was 55.2±13.3 years. CHD complexity categories included 147 (61.3%) simple, 68 (28.3%) intermediate, and 25 (10.4%) severe. The most common CHD type was atrial septal defect (n=78). More complex CHD conditions included transposition of the great arteries (n=14), anomalous pulmonary veins (n=13), tetralogy of Fallot (n=8), cor triatriatum (n=7), single ventricle physiology (n=2), among others. The majority (71.3%) of patients had trialed at least one antiarrhythmic drug. Forty-six patients (22.1%) had reduced systemic ventricular ejection fraction <50%, and mean left atrial diameter was 44.1±8.2 mm. Pulmonary vein isolation was performed in 227 patients (94.6%); additional ablation included left atrial linear ablations (40%), complex fractionated atrial electrogram (19.2%), and cavotricuspid isthmus ablation (40.8%). One-year complete and partial success rates were 45.0% and 20.5%, respectively, with no significant difference in the rate of complete success between complexity groups. Overall, 38 patients (15.8%) required more than one ablation procedure. There were 3 (1.3%) major and 13 (5.4%) minor procedural complications. CONCLUSIONS: AF ablation in CHD was safe and resulted in AF control in a majority of patients, regardless of complexity. Future work should address the most appropriate ablation targets in this challenging population.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Heart Defects, Congenital , Pulmonary Veins , Transposition of Great Vessels , Adult , Aged , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/complications , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Catheter Ablation/adverse effects , Catheter Ablation/methods , Child , Female , Heart Defects, Congenital/complications , Humans , Male , Middle Aged , Pulmonary Veins/surgery , Registries , Retrospective Studies , Treatment Outcome
18.
JAMA Cardiol ; 7(7): 733-741, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35544069

ABSTRACT

Importance: Patients with early-onset atrial fibrillation (AF) are enriched for rare variants in cardiomyopathy and arrhythmia genes. The clinical significance of these rare variants in patients with early-onset AF is unknown. Objective: To assess the association between rare variants in cardiomyopathy and arrhythmia genes detected in patients with early-onset AF and time to death. Design, Setting, and Participants: This prospective cohort study included participants with AF diagnosed before 66 years of age who underwent whole-genome sequencing through the National Heart, Lung and Blood Institute's Trans-Omics for Precision Medicine program. Participants were enrolled from November 23, 1999, to June 2, 2015. Data were analyzed from February 26 to September 19, 2021. Exposures: Rare variants identified in a panel of 145 genes that are included in cardiomyopathy and arrhythmia panels used by commercial clinical genetic testing laboratories. Main Outcomes and Measures: The primary study outcome was time to death and was adjudicated from medical records and the National Death Index. Multivariable Cox proportional hazards regression was used to evaluate the association of disease-associated variants with risk of death after adjustment for age at AF diagnosis, sex, race, body mass index, left ventricular ejection fraction, and an interaction term of age at AF diagnosis and disease-associated variant status. Results: Among 1293 participants (934 [72%] male; median age at enrollment, 56.0 years; IQR, 48.0-61.0 years), disease-associated (pathogenic or likely pathogenic) rare variants were found in 131 (10%). During a median follow-up of 9.9 years (IQR, 6.9-13.2 years), 219 participants (17%) died. In univariable analysis, disease-associated variants were associated with an increased risk of mortality (hazard ratio, [HR], 1.5; 95% CI, 1.0-2.1; P = .05); the association remained significant in multivariable modeling when adjusted for age at AF diagnosis, sex, race, body mass index, left ventricular ejection fraction, and an interaction term between disease-associated variant status and age at AF diagnosis. The interaction demonstrated that disease-associated variants were associated with a significantly higher risk of mortality compared with no disease-associated variant when AF was diagnosed at a younger age (P = .008 for interaction). Higher body mass index (per IQR: HR, 1.4; 95% CI, 1.2-1.6; P < .001) and lower left ventricular ejection fraction (per IQR: HR, 0.8; 95% CI, 0.7-0.8; P < .001) were associated with higher mortality risk. There were 73 cardiomyopathy-related deaths, 40 sudden deaths, and 10 stroke-related deaths. Mortality among patients with the most prevalent genes with disease-associated variants was 26% (10 of 38 patients) for TTN, 33% (6 of 18) for MYH7, 22% (2 of 9) for LMNA, 0% (0 of 10) for MYH6, and 0% (0 of 8) for KCNQ1. Conclusions and Relevance: The findings suggest that rare variants in cardiomyopathy and arrhythmia genes may be associated with increased risk of mortality among patients with early-onset AF, especially those diagnosed at a younger age. Genetic testing may provide important prognostic information for patients with early-onset AF.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Atrial Fibrillation/complications , Cardiomyopathies/complications , Cardiomyopathies/genetics , Female , Humans , Male , Prospective Studies , Stroke Volume , Ventricular Function, Left
19.
Circ Res ; 130(11): 1698-1722, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617362

ABSTRACT

There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the absence of known myocardial disease are often labelled as idiopathic, or lone. While ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting with frequent premature ventricular contractions, conduction system disease, and early onset atrial fibrillation, in which most detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden death are recognized in current indications for implantable cardioverter defibrillators which otherwise rely upon a left ventricular ejection fraction ≤0.35 in dilated cardiomyopathy. The genetic diagnoses impact other aspects of clinical management such as exercise prescription and pharmacological therapy of arrhythmias, and new therapies are coming into clinical investigation for specific genetic cardiomyopathies. The expansion of available genetic information and implications raises new challenges for genetic counseling, particularly with the family member who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to their numeric literacy during shared decision-making. For patients presenting with arrhythmias or cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, intervention to change the trajectory for specific genotype-phenotype profiles, and enable further development and evaluation of emerging targeted therapies.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Cardiomyopathy, Dilated , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/therapy , Death, Sudden , Death, Sudden, Cardiac/prevention & control , Humans , Stroke Volume , Ventricular Function, Left
20.
J Cardiovasc Electrophysiol ; 33(8): 1655-1664, 2022 08.
Article in English | MEDLINE | ID: mdl-35598280

ABSTRACT

INTRODUCTION: To target posterior wall isolation (PWI) in atrial fibrillation (AF) ablation, diffuse ablation theoretically confers a lower risk of conduction recovery compared to box set. We sought to assess the safety and efficacy of diffuse PWI with low-flow, medium-power, and short-duration (LF-MPSD) ablation, and evaluate the durability of pulmonary vein isolation (PVI) and PWI among patients undergoing repeat ablations. METHODS: We retrospectively studied patients undergoing LF-MPSD ablation for AF (PVI + diffuse PWI) between August 2017 and December 2019. Clinical characteristics were collected. Kaplan-Meier survival analysis was performed to study AF/atrial flutter (AFL) recurrence. Ablation data were analyzed in patients who underwent a repeat AF/AFL ablation. RESULTS: Of the 463 patients undergoing LF-MPSD AF ablation (PVI alone, or PVI + diffuse PWI), 137 patients had PVI + diffuse PWI. Acute PWI with complete electrocardiogram elimination was achieved in 134 (97.8%) patients. Among the 126 patients with consistent follow-up, 38 (30.2%) patients had AF/AFL recurrence during a median duration of 14 months. Eighteen patients underwent a repeat AF/AFL ablation after PVI + diffuse PWI, and 16 (88.9%) patients had durable PVI, in contrast to 10 of 45 (23.9%) patients who had redo ablation after LF-MPSD PVI alone. Seven patients (38.9%) had durable PWI, while 11 patients had partial electrical recovery at the posterior wall. The median percentage of area without electrical activity at the posterior wall was 70.7%. Conduction block across the posterior wall was maintained in 16 (88.9%) patients. CONCLUSION: There was a high rate of PVI durability in patients undergoing diffuse PWI and PVI. Partial posterior wall electrical recovery was common but conduction block across the posterior wall was maintained in most patients.


Subject(s)
Atrial Fibrillation , Atrial Flutter , Catheter Ablation , Pulmonary Veins , Atrial Fibrillation/diagnosis , Atrial Fibrillation/etiology , Atrial Fibrillation/surgery , Atrial Flutter/diagnosis , Atrial Flutter/etiology , Atrial Flutter/surgery , Catheter Ablation/adverse effects , Humans , Pulmonary Veins/surgery , Recurrence , Retrospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...