Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 81(11): 2130-2138, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28899215

ABSTRACT

In Corynebacterium glutamicum, the activity of the 2-oxoglutarate dehydrogenase (ODH) complex is negatively regulated by the unphosphorylated form of OdhI protein, which is critical for L-glutamate overproduction. We examined the potential impact of protein acylation at lysine (K)-132 of OdhI in C. glutamicum ATCC13032. The K132E succinylation-mimic mutation reduced the ability of OdhI to bind OdhA, the catalytic subunit of the ODH complex, which reduced the inhibition of ODH activity. In vitro succinylation of OdhI protein also reduced the ability to inhibit ODH, and the K132R mutation blocked the effect. These results suggest that succinylation at K132 may attenuate the OdhI function. Consistent with these results, the C. glutamicum mutant strain with OdhI-K132E showed decreased L-glutamate production. Our results indicated that not only phosphorylation but also succinylation of OdhI protein may regulate L-glutamate production in C. glutamicum.


Subject(s)
Corynebacterium glutamicum/metabolism , Enzyme Inhibitors/pharmacology , Glutamic Acid/biosynthesis , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Ketoglutarate Dehydrogenase Complex/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Amino Acid Sequence , Corynebacterium glutamicum/enzymology , Ketoglutarate Dehydrogenase Complex/chemistry , Ketoglutarate Dehydrogenase Complex/genetics , Models, Molecular , Mutation , Phosphorylation , Protein Domains , Succinic Acid/metabolism
2.
Mol Microbiol ; 104(4): 677-689, 2017 05.
Article in English | MEDLINE | ID: mdl-28256782

ABSTRACT

Protein Nε-acylation is emerging as a ubiquitous post-translational modification. In Corynebacterium glutamicum, which is utilized for industrial production of l-glutamate, the levels of protein acetylation and succinylation change drastically under the conditions that induce glutamate overproduction. Here, the acylation of phosphoenolpyruvate carboxylase (PEPC), an anaplerotic enzyme that supplies oxaloacetate for glutamate overproduction was characterized. It was shown that acetylation of PEPC at lysine 653 decreased enzymatic activity, leading to reduced glutamate production. An acetylation-mimic (KQ) mutant of K653 showed severely reduced glutamate production, while the corresponding KR mutant showed normal production levels. Using an acetyllysine-incorporated PEPC protein, we verified that K653-acetylation negatively regulates PEPC activity. In addition, NCgl0616, a sirtuin-type deacetylase, deacetylated K653-acetylated PEPC in vitro. Interestingly, the specific activity of PEPC was increased during glutamate overproduction, which was blocked by the K653R mutation or deletion of sirtuin-type deacetylase homologues. These findings suggested that deacetylation of K653 by NCgl0616 likely plays a role in the activation of PEPC, which maintains carbon flux under glutamate-producing conditions. PEPC deletion increased protein acetylation levels in cells under glutamate-producing conditions, supporting the hypothesis that PEPC is responsible for a large carbon flux change under glutamate-producing conditions.


Subject(s)
Corynebacterium glutamicum/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Acetylation , Corynebacterium glutamicum/genetics , Glutamic Acid/metabolism , Lysine/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Protein Processing, Post-Translational/genetics , Pyruvate Carboxylase/metabolism
3.
Microbiologyopen ; 5(1): 152-73, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26663479

ABSTRACT

The bacterium Corynebacterium glutamicum is utilized during industrial fermentation to produce amino acids such as L-glutamate. During L-glutamate fermentation, C. glutamicum changes the flux of central carbon metabolism to favor L-glutamate production, but the molecular mechanisms that explain these flux changes remain largely unknown. Here, we found that the profiles of two major lysine acyl modifications were significantly altered upon glutamate overproduction in C. glutamicum; acetylation decreased, whereas succinylation increased. A label-free semi-quantitative proteomic analysis identified 604 acetylated proteins with 1328 unique acetylation sites and 288 succinylated proteins with 651 unique succinylation sites. Acetylation and succinylation targeted enzymes in central carbon metabolic pathways that are directly related to glutamate production, including the 2-oxoglutarate dehydrogenase complex (ODHC), a key enzyme regulating glutamate overproduction. Structural mapping revealed that several critical lysine residues in the ODHC components were susceptible to acetylation and succinylation. Furthermore, induction of glutamate production was associated with changes in the extent of acetylation and succinylation of lysine, suggesting that these modifications may affect the activity of enzymes involved in glutamate production. Deletion of phosphotransacetylase decreased the extent of protein acetylation in nonproducing condition, suggesting that acetyl phosphate-dependent acetylation is active in C. glutamicum. However, no effect was observed on the profiles of acetylation and succinylation in glutamate-producing condition upon disruption of acetyl phosphate metabolism or deacetylase homologs. It was considered likely that the reduced acetylation in glutamate-producing condition may reflect metabolic states where the flux through acid-producing pathways is very low, and substrates for acetylation do not accumulate in the cell. Succinylation would occur more easily than acetylation in such conditions where the substrates for both acetylation and succinylation are limited. This is the first study investigating the acetylome and succinylome of C. glutamicum, and it provides new insight into the roles of acyl modifications in C. glutamicum biology.


Subject(s)
Corynebacterium glutamicum/metabolism , Glutamic Acid/biosynthesis , Metabolic Networks and Pathways/physiology , Protein Processing, Post-Translational/physiology , Acetylation , Amino Acid Sequence , Bioreactors/microbiology , Gene Expression Regulation, Bacterial , Lysine/metabolism , Mass Spectrometry , Phosphate Acetyltransferase/genetics , Proteome/analysis
4.
Int J Dent ; 2012: 172935, 2012.
Article in English | MEDLINE | ID: mdl-22693506

ABSTRACT

Objective. The bacterial examination has been performed during the course of the root canal treatment. In the present pilot study, the new developed method, using fluorescence reagents and a membrane filter, was applied to the detection and quantification of bacteria in infected root canals, in order to evaluate the outcomes of the treatment. Methods. Six infected root canals with periapical lesions from 5 subjects were included. Informed consent was obtained from all subjects (age ranges, 23-79 years). Samples from infected root canals were collected at the beginning of the treatment (termed #25 First), the end of the first day of treatment (termed #55 First), and the next appointment day (termed #55 Second). Then, the bacterial count (CFU) was measured using fluorescence reagents (4',6'-diamidino-2-phenylindole and propidium iodide) and the polycarbonate membrane filter by Bioplorer. Results. The mean ± SD of CFU in the sample of "#25 First" was (1.0 ± 1.4) × 10(5). As the root canal treatment progressed, the CFU decreased as 7.9 × 10(3) (#55 First) and 4.3 × 10(2) (#55 Second). Conclusion. In the present pilot study, rapid detection and quantification of bacteria in infected root canals were found to be successfully performed using fluorescence reagents and a membrane filter (Bioplorer analysis).

5.
Int J Dent ; 2012: 609689, 2012.
Article in English | MEDLINE | ID: mdl-22548063

ABSTRACT

Objective. Periapical periodontitis is an infectious and inflammatory disease of the periapical tissues caused by oral bacteria invading the root canal. In the present study, profiling of the microbiota in infected root canals was performed using anaerobic culture and molecular biological techniques for bacterial identification. Methods. Informed consent was obtained from all subjects (age ranges, 34-71 years). Nine infected root canals with periapical lesions from 7 subjects were included. Samples from infected root canals were collected, followed by anaerobic culture on CDC blood agar plates. After 7 days, colony forming units (CFU) were counted and isolated bacteria were identified by 16S rRNA gene sequencing. Results. The mean bacterial count (CFU) in root canals was (0.5 ± 1.1) × 10(6) (range 8.0 × 10(1)-3.1 × 10(6)), and anaerobic bacteria were predominant (89.8%). The predominant isolates were Olsenella (25.4%), Mogibacterium (17.7%), Pseudoramibacter (17.7%), Propionibacterium (11.9%) and Parvimonas (5.9%). Conclusion. The combination of anaerobic culture and molecular biological techniques makes it possible to analyze rapidly the microbiota in infected root canals. The overwhelming majority of the isolates from infected root canals were found to be anaerobic bacteria, suggesting that the environment in root canals is anaerobic and therefore support the growth of anaerobes.

SELECTION OF CITATIONS
SEARCH DETAIL
...