Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(13): 8829-8836, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38495978

ABSTRACT

The use of biological host-guest interactions, specifically the binding of hemoprotein to heme, has attracted significant research interest in the design of artificial protein assemblies. However, because of the inherent flexibility of the propionic acid group of heme, it is difficult to control the positioning and orientation of the protein unit and to construct well-ordered structures. Herein, we report a heme-substituted protein dimer composed of the native hemoprotein HasA, which accommodates a tetraphenylporphyrin bearing an additional metal coordination site. The specific binding of the tetraphenylporphyrin with an additional metal coordination site that protrudes in a fixed direction confines the configuration of the dimer structure to a defined bent form. The small-angle X-ray scattering profile shows the dimer structure with a bent form and suggests dynamic rotational behavior while keeping its bent-core structure, resembling a bevel gear. This unique dimer structure demonstrates that the design of heme-substituted protein assemblies can be expanded to protein assemblies while maintaining the rotational freedom of the individual protein units.

2.
Sci Total Environ ; 890: 164475, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37257625

ABSTRACT

Bacterial cytochrome P450 monooxygenase P450BM3 is a promising enzyme to provide novel substrate specificity and enhanced enzymatic activity. The wild type (WT) has been shown to metabolize the widely distributed polychlorinated biphenyl (PCB) 2,3',4,4',5-pentachlorobiphenyl (CB118) to hydroxylated metabolites. However, this reaction requires the coexistence of perfluoroalkyl carboxylic acids (PFCAs). To locate P450BM3 mutants metabolizing CB118 without PFCAs, mutations were selected from amino acids comprising the substrate-binding cavity and the substrate entrance. The mutant A264G showed enhanced hydroxylation activities compared to the WT for the production of five hydroxylated metabolites. Perfluorooctanoic acid addition provided the highest activity, as found in the WT. The docking model of A264G and CB118 indicated that the enlargement of the space above the heme brought CB118 close to the heme, resulting in high activity. In contrast, the mutants L188Q, QG, LVQ, and GVQ, which contain the L188Q mutation, showed higher activity than WT even without PFCAs. Docking models revealed that the closed form found in substrate binding was induced by the L188Q mutation in the substrate non-binding state of the mutants. These mutants are promising for bioremediation of PCBs using enhanced metabolizing activities.


Subject(s)
Bacillus megaterium , Polychlorinated Biphenyls , Bacillus megaterium/genetics , Bacillus megaterium/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Polychlorinated Biphenyls/metabolism , Hydroxylation , Heme/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
J Inorg Biochem ; 245: 112235, 2023 08.
Article in English | MEDLINE | ID: mdl-37167731

ABSTRACT

Cytochrome P450 enzymes (CYPs) have attracted much promise as biocatalysts in a push for cleaner and more environmentally friendly catalytic systems. However, changing the substrate specificity of CYPs, such as CYP102A1, can be a challenging task, requiring laborious mutagenesis. An alternative approach is the use of decoy molecules that "trick" the enzyme into becoming active by impersonating the native substrate. Whilst the decoy molecule system has been extensively developed for CYP102A1, its general applicability for other CYP102-family enzymes has yet to be shown. Herein, we demonstrate that decoy molecules can "trick" CYP102A5 and A7 into becoming active and hydroxylating non-native substrates. Furthermore, significant differences in decoy molecule selectivity as well as decoy molecule binding were observed. The X-ray crystal structure of the CYP102A5 haem domain was solved at 2.8 Å, delivering insight into a potential substate-binding site that differs significantly from CYP102A1.


Subject(s)
Bacterial Proteins , Cytochrome P-450 Enzyme System , Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/metabolism , Binding Sites , Substrate Specificity , NADPH-Ferrihemoprotein Reductase/chemistry
4.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768714

ABSTRACT

With the increasing demand for blue dyes, it is of vital importance to develop a green and efficient biocatalyst to produce indigo. This study constructed a hydrogen peroxide-dependent catalytic system for the direct conversion of indole to indigo using P450BM3 with the assistance of dual-functional small molecules (DFSM). The arrangements of amino acids at 78, 87, and 268 positions influenced the catalytic activity. F87G/T268V mutant gave the highest catalytic activity with kcat of 1402 min-1 and with a yield of 73%. F87A/T268V mutant was found to produce the indigo product with chemoselectivity as high as 80%. Moreover, F87G/T268A mutant was found to efficiently catalyze indole oxidation with higher activity (kcat/Km = 1388 mM-1 min-1) than other enzymes, such as the NADPH-dependent P450BM3 (2.4-fold), the Ngb (32-fold) and the Mb (117-fold). Computer simulation results indicate that the arrangements of amino acid residues in the active site can significantly affect the catalytic activity of the protein. The DFSM-facilitated P450BM3 peroxygenase system provides an alternative, simple approach for a key step in the bioproduction of indigo.


Subject(s)
Cytochrome P-450 Enzyme System , Indigo Carmine , Cytochrome P-450 Enzyme System/metabolism , Computer Simulation , Oxidation-Reduction , Indoles/metabolism
5.
Angew Chem Int Ed Engl ; 62(13): e202215706, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36519803

ABSTRACT

Catching the structure of cytochrome P450 enzymes in flagrante is crucial for the development of P450 biocatalysts, as most structures collected are found trapped in a precatalytic conformation. At the heart of P450 catalysis lies Cpd I, a short-lived, highly reactive intermediate, whose recalcitrant nature has thwarted most attempts at capturing catalytically relevant poses of P450s. We report the crystal structure of P450BM3 mimicking the state in the precise moment preceding epoxidation, which is in perfect agreement with the experimentally observed stereoselectivity. This structure was attained by incorporation of the stable Cpd I mimic oxomolybdenum mesoporphyrin IX into P450BM3 in the presence of styrene. The orientation of styrene to the Mo-oxo species in the crystal structures sheds light onto the dynamics involved in the rotation of styrene to present its vinyl group to Cpd I. This method serves as a powerful tool for predicting and modelling the stereoselectivity of P450 reactions.


Subject(s)
Cytochrome P-450 Enzyme System , Styrenes , Oxidation-Reduction , Cytochrome P-450 Enzyme System/metabolism , Catalysis
7.
Chembiochem ; 23(14): e202200095, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35352458

ABSTRACT

Tetraphenylporphyrin (TPP) is a symmetrically substituted synthetic porphyrin whose properties can be readily modified, providing it with significant advantages over naturally occurring porphyrins. Herein, we report the first example of a stable complex between a native biomolecule, the haemoprotein HasA, and TPP as well as its derivatives. The X-ray crystal structures of nine different HasA-TPP complexes were solved at high resolutions. HasA capturing TPP derivatives was also demonstrated to inhibit growth of the opportunistic pathogen Pseudomonas aeruginosa. Mutant variants of HasA binding FeTPP were shown to possess a different mode of coordination, permitting the cyclopropanation of styrene.


Subject(s)
Porphyrins , Porphyrins/chemistry , Pseudomonas aeruginosa
8.
Faraday Discuss ; 234(0): 304-314, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35179151

ABSTRACT

CYP152A1 (cytochrome P450BSß) is a fatty acid peroxygenase, which specifically catalyses the oxidation of long-chain fatty acids using hydrogen peroxide as an oxidant. We have found that CYP152A1 possesses catalase activity, which competes with the hydroxylation of long-chain fatty acids, the oxidation of non-native substrates, and haem degradation. Using hydrogen peroxide, Compound I of CYP152A1 could not be observed, due to its swift decomposition via catalase activity, where Compound I reacts with another molecule of hydrogen peroxide to form O2. In contrast, a clear spectral change indicative of Compound I formation was observed when mCPBA was employed as the oxidant. This work presents valuable insights into an important role for the catalase activity of CYP152A1 in avoiding enzyme deactivation when no substrate is available for oxidation.


Subject(s)
Fatty Acids , Hydrogen Peroxide , Catalase/metabolism , Catalytic Domain , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Hydrogen Peroxide/metabolism , Mixed Function Oxygenases , Oxidants , Oxidation-Reduction , Peroxidases
9.
Angew Chem Int Ed Engl ; 61(7): e202112456, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34913238

ABSTRACT

Using artificial hemes for the reconstruction of natural heme proteins represents a fascinating approach to enhance the bioactivity of the latter. We report the synthesis of various metal 5-oxaporphyrinium cations as cofactors, and a cobalt 5-oxaporphyrinium cation was successfully incorporated into the heme-acquisition protein (HasA) secreted by Pseudomonas aeruginosa. We hypothesize that the oxaporphyrinium cation strongly binds to the HasA-specific outer membrane receptor (HasR) due to its cationic charge, which prevents the subsequent acquisition of heme. In fact, the reconstructed HasA inhibited the growth of Pseudomonas aeruginosa and even of multidrug-resistant P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cobalt/pharmacology , Hemeproteins/chemistry , Porphyrins/pharmacology , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cations/chemistry , Cations/pharmacology , Cobalt/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests , Porphyrins/chemistry , Pseudomonas aeruginosa/growth & development
10.
Angew Chem Int Ed Engl ; 61(7): e202111612, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34704327

ABSTRACT

We report an OmpF loop deletion mutant, which improves the cellular uptake of external additives into an Escherichia coli whole-cell biocatalyst. Through co-expression of the OmpF mutant with wild-type P450BM3 in the presence of decoy molecules, the yield of the whole-cell biotransformation of benzene could be considerably improved. Notably, with the decoy molecule C7AM-Pip-Phe the yield duodecupled from 5.7 % to 70 %, with 80 % phenol selectivity. The benzylic hydroxylation of alkyl- and cycloalkylbenzenes was also examined, and with the aid of decoy molecules, propylbenzene and tetralin were converted to 1-hydroxylated products with 78 % yield and 94 % (R) ee for propylbenzene and 92 % yield and 94 % (S) ee for tetralin. Our results suggest that both the decoy molecule and substrate traverse the artificial OmpF channel, synergistically boosting whole-cell bioconversions.


Subject(s)
Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Porins/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Models, Molecular , Molecular Structure , NADPH-Ferrihemoprotein Reductase/chemistry , Porins/chemistry
11.
Nat Commun ; 12(1): 5301, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489423

ABSTRACT

Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-ß2 (Kapß2) at 1:1 ratio. The nuclear magnetic resonances of Kapß2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapß2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration.


Subject(s)
Active Transport, Cell Nucleus/genetics , C9orf72 Protein/chemistry , Peptides/chemistry , beta Karyopherins/chemistry , Binding Sites , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Cloning, Molecular , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , Humans , Models, Molecular , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Peptides/genetics , Peptides/metabolism , Phase Transition , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , beta Karyopherins/antagonists & inhibitors , beta Karyopherins/genetics , beta Karyopherins/metabolism
12.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001620

ABSTRACT

Nitric oxide (NO) reductase from the fungus Fusarium oxysporum is a P450-type enzyme (P450nor) that catalyzes the reduction of NO to nitrous oxide (N2O) in the global nitrogen cycle. In this enzymatic reaction, the heme-bound NO is activated by the direct hydride transfer from NADH to generate a short-lived intermediate ( I ), a key state to promote N-N bond formation and N-O bond cleavage. This study applied time-resolved (TR) techniques in conjunction with photolabile-caged NO to gain direct experimental results for the characterization of the coordination and electronic structures of I TR freeze-trap crystallography using an X-ray free electron laser (XFEL) reveals highly bent Fe-NO coordination in I , with an elongated Fe-NO bond length (Fe-NO = 1.91 Å, Fe-N-O = 138°) in the absence of NAD+ TR-infrared (IR) spectroscopy detects the formation of I with an N-O stretching frequency of 1,290 cm-1 upon hydride transfer from NADH to the Fe3+-NO enzyme via the dissociation of NAD+ from a transient state, with an N-O stretching of 1,330 cm-1 and a lifetime of ca. 16 ms. Quantum mechanics/molecular mechanics calculations, based on these crystallographic and IR spectroscopic results, demonstrate that the electronic structure of I is characterized by a singly protonated Fe3+-NHO•- radical. The current findings provide conclusive evidence for the N2O generation mechanism via a radical-radical coupling of the heme nitroxyl complex with the second NO molecule.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Fungal Proteins/chemistry , Fusarium/chemistry , Nitric Oxide/chemistry , Nitrous Oxide/chemistry , Oxidoreductases/chemistry , Crystallography, X-Ray/methods , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Electrons , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fusarium/enzymology , Fusarium/genetics , Gene Expression , Heme/chemistry , Heme/metabolism , Iron/chemistry , Iron/metabolism , NAD/chemistry , NAD/metabolism , Nitric Oxide/metabolism , Nitrogen Oxides/chemistry , Nitrogen Oxides/metabolism , Nitrous Oxide/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protons
13.
Inorg Chem ; 59(21): 15751-15756, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33131277

ABSTRACT

5,15-Diazaporphyrins are porphyrin analogues with imine-type sp2-hybridized nitrogen atoms at the meso-positions. Even though these compounds are more electron-deficient than regular porphyrins, the use of iron diazaporphyrins as catalysts has not been reported. Herein, we disclose the synthesis, structure, and electronic properties of iron(III) 5,15-diazaporphyrins. We evaluate their structures and electronic natures by X-ray analysis and electrochemical analyses. We also demonstrate that chloroiron(III) 5,15-diazaporphyrins exhibit high catalytic activity in the direct oxidation of alkanes due to their intrinsic electron-deficient nature. On the basis of stoichiometric reactions of iron(III) diazaporphyrin with iodosylbenzene as an oxidant, it was possible to demonstrate the existence of an iodosylbenzene-iron diazaporphyrin adduct reaction intermediate that serves as a reservoir to generate oxo-iron species.

14.
Chem Commun (Camb) ; 56(75): 11026-11029, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32895681

ABSTRACT

We report the enhanced cis- and enantioselective cyclopropanation of styrene catalysed by cytochrome P450BM3 in the presence of dummy substrates, i.e. decoy molecules. With the aid of the decoy molecule R-Ibu-Phe, diastereoselectivity for the cis diastereomers reached 91%, and the enantiomeric ratio for the (1S,2R) isomer reached 94%. Molecular dynamics simulations underpin the experimental data, revealing the mechanism of how enantioselectivity is controlled by the addition of decoy molecules.


Subject(s)
Bacterial Proteins/metabolism , Cyclopropanes/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Styrene/metabolism , Biocatalysis , Cyclopropanes/chemistry , Molecular Dynamics Simulation , Molecular Structure , Stereoisomerism , Styrene/chemistry
15.
Curr Opin Chem Biol ; 59: 155-163, 2020 12.
Article in English | MEDLINE | ID: mdl-32781431

ABSTRACT

Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C-H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, 'decoy molecules'. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry.


Subject(s)
Bacillus megaterium/metabolism , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Bacillus megaterium/chemistry , Bacillus megaterium/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Directed Molecular Evolution/methods , Hydroxylation , Models, Molecular , Mutagenesis, Site-Directed/methods , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/genetics , Substrate Specificity
16.
Chem Commun (Camb) ; 56(49): 6723-6726, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32421111

ABSTRACT

We prepared enzyme-immobilized hydrogels and investigated the effects of the cross-linking density and polymer properties on their oxidation reaction rate. The oxidation rate of enzyme-immobilized hydrogels increased as the cross-linking density in the hydrogels increased. In addition, we controlled the oxidation rate using hydrogels exhibiting an appropriate interaction with a decoy molecule in the hydrogel.


Subject(s)
Cross-Linking Reagents/metabolism , Cytochrome P-450 Enzyme System/metabolism , Hydrogels/metabolism , Polymers/metabolism , Cross-Linking Reagents/chemistry , Cytochrome P-450 Enzyme System/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogels/chemistry , Molecular Structure , Oxidation-Reduction , Polymers/chemistry , Sphingomonas/enzymology
17.
Angew Chem Int Ed Engl ; 59(19): 7611-7618, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32157795

ABSTRACT

Despite CYP102A1 (P450BM3) representing one of the most extensively researched metalloenzymes, crystallisation of its haem domain upon modification can be a challenge. Crystal structures are indispensable for the efficient structure-based design of P450BM3 as a biocatalyst. The abietane diterpenoid derivative N-abietoyl-l-tryptophan (AbiATrp) is an outstanding crystallisation accelerator for the wild-type P450BM3 haem domain, with visible crystals forming within 2 hours and diffracting to a near-atomic resolution of 1.22 Å. Using these crystals as seeds in a cross-microseeding approach, an assortment of P450BM3 haem domain crystal structures, containing previously uncrystallisable decoy molecules and diverse artificial metalloporphyrins binding various ligand molecules, as well as heavily tagged haem-domain variants, could be determined. Some of the structures reported herein could be used as models of different stages of the P450BM3 catalytic cycle.


Subject(s)
Bacterial Proteins/chemistry , Crystallization/methods , Cytochrome P-450 Enzyme System/chemistry , NADPH-Ferrihemoprotein Reductase/chemistry , Bacillus megaterium/chemistry , Catalysis , Heme/chemistry , Indicators and Reagents , Metalloporphyrins/chemical synthesis , Mutagenesis, Site-Directed , Protein Binding , Substrate Specificity , X-Ray Diffraction
18.
Chem Commun (Camb) ; 56(17): 2546-2549, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32040115

ABSTRACT

Oligonucleotides represent powerful DNA-recognition tools, but the formation of undesirable "self-duplexes" becomes more probable with increasing DNA affinity. Herein, we have developed a modified nucleobase with "self-avoiding" properties. Facile methylation of guanine yields a cationic N7-methylguanine, which suppresses the formation of self-duplexes whilst improving DNA affinity through electrostatic interaction.


Subject(s)
DNA/chemistry , Guanine/chemistry , Binding Sites , Cations , Methylation , Peptide Nucleic Acids/chemistry , Static Electricity
19.
ACS Chem Biol ; 14(7): 1637-1642, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31287285

ABSTRACT

To survive in the iron-devoid environment of their host, pathogenic bacteria have devised multifarious cunning tactics such as evolving intricate heme transport systems to pirate extracellular heme. Yet, the potential of heme transport systems as antimicrobial targets has not been explored. Herein we developed a strategy to deliver antimicrobials by exploiting the extracellular heme acquisition system protein A (HasA) of Pseudomonas aeruginosa. We demonstrated that, analogous to heme uptake, HasA can specifically traffic an antimicrobial, gallium phthalocyanine (GaPc), into the intracellular space of P. aeruginosa via the interaction of HasA with its outer membrane receptor HasR. HasA enables water-insoluble GaPc to be mistakenly acquired by P. aeruginosa, permitting its sterilization (>99.99%) by irradiation with near-infrared (NIR) light, irrespective of antibiotic resistance. Our findings substantiate that bacterial heme uptake via protein-protein recognition is an attractive target for antimicrobials, enabling specific and effective sterilization.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Drug Carriers/metabolism , Heme/metabolism , Indoles/administration & dosage , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Drug Delivery Systems , Humans , Indoles/pharmacology , Isoindoles , Models, Molecular , Pseudomonas Infections/drug therapy , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/drug effects
20.
Acc Chem Res ; 52(4): 925-934, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30888147

ABSTRACT

Bacterial cytochrome P450s (P450s) are at the focus of attention as potential biocatalysts for applications in green synthetic chemistry, as they possess high activity for the hydroxylation of inert substrate C-H bonds. The high activity of bacterial P450s, such as P450BM3, is chiefly due to their high substrate specificity, and consequently, the catalytic activity of P450BM3 toward non-native substrates is very low, limiting the utility of bacterial P450s as biocatalysts. To enable oxidation of non-native substrates by P450BM3 without any mutagenesis, we have developed a series of "decoy molecules", inert dummy substrates, with structures that resemble those of the native substrates. Decoy molecules fool P450BM3 into generating the active species, so-called Compound I, enabling the catalytic oxidation of non-native substrates other than fatty acids. Perfluorinated carboxylic acids (PFCs) serve as decoy molecules to initiate the activation of molecular oxygen in the same manner as long-alkyl-chain fatty acids, due to their structural similarity, and induce the generation of Compound I, but, unlike the native substrates, PFCs are not oxidizable by Compound I, allowing the hydroxylation of non-native substrates, such as gaseous alkanes and benzene. The catalytic activity for non-native substrate hydroxylation was significantly enhanced by employing second generation decoy molecules, PFCs modified with amino acids (PFC-amino acids). Cocrystals of P450BM3 with PFC9-Trp revealed clear electron density in the fatty-acid-binding channel that was readily assigned to PFC9-Trp. The alkyl chain terminus of PFC9-Trp does not reach the active site owing to multiple hydrogen bonding interactions between the carboxyl and carbonyl groups of PFC9-Trp and amino acids located at the entrance of the substrate binding channel of P450BM3 that fix it in place. The remaining space above the heme after binding of PFC9-Trp can be utilized to accommodate non-native substrates. Further developments revealed that third generation decoy molecules, N-acyl amino acids, such as pelargonoyl-l-phenylalanine (C9-Phe), can serve as decoy molecules, indicating that the rationale "fluorination is required for decoy molecule function" can be safely discarded. Diverse carboxylic acids including dipeptides could now be exploited as building blocks, and a library of decoy molecules possessing diverse structures was prepared. Among the third-generation decoy molecules examined N-enanthyl-l-proline modified with l-phenylalanine (C7-Pro-Phe) afforded the maximum turnover rate for benzene hydroxylation. The structural diversity of third-generation decoy molecules was also utilized to control the stereoselectivity of hydroxylation for the benzylic hydroxylation of Indane, showing that decoy molecules can alter stereoselectivity. As both the catalytic activity and enantioselectivity are dependent upon the structure of the decoy molecules, their design allows us to regulate reactions catalyzed by wild-type enzymes. Furthermore, decoy molecules can also activate intracellular P450BM3, allowing the use of E. coli expressing wild-type P450BM3 as an efficient whole-cell bioreactor. It should be noted that Mn-substituted full-length P450BM3 (Mn-P450BM3) is also active for the hydroxylation of propane in which the regioselectivity diverged from that of Fe-P450BM3. The results summarized in this Account represent good examples of how the reactive properties of P450BM3 can be controlled for the monooxygenation of non-native substrates in vitro as well as in vivo to expand the potential of P450BM3.


Subject(s)
Bacillus megaterium/enzymology , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Bacterial Proteins/genetics , Benzene/chemistry , Benzene/metabolism , Binding Sites , Biocatalysis , Catalytic Domain , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/metabolism , Fluorocarbons/chemistry , Fluorocarbons/metabolism , Hydroxylation , Kinetics , NADPH-Ferrihemoprotein Reductase/genetics , Protein Structure, Tertiary , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL