Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746410

ABSTRACT

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although G-protein coupled receptor-mediated integrin activation has been extensively studied in non-adherent migratory cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent stationary cells such as airway smooth muscle. Here we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families respectively, to enhance adhesion of muscle to the matrix. These cytokines also induce activation of ß1 integrins as detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is significantly increased in the smooth muscle of patients with asthma compared to healthy controls, suggesting a disease-relevant role for aberrant integrin activation. Indeed, we find integrin activation induced by a ß1 activating antibody, the divalent cation manganese, or the synthetic peptide ß1-CHAMP, dramatically enhances force transmission in collagen gels, mouse tracheal rings, and human bronchial rings even in the absence of cytokines. We further demonstrate that cytokine-induced activation of ß1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 resulting in ß1 integrin activation. Taken together, these data identify a previously unknown pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant ß1 integrin activation in adherent smooth muscle and help explain the exaggerated force transmission that characterizes chronic airways diseases such as asthma.

2.
Nat Chem Biol ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443470

ABSTRACT

K-Ras is the most commonly mutated oncogene in human cancer. The recently approved non-small cell lung cancer drugs sotorasib and adagrasib covalently capture an acquired cysteine in K-Ras-G12C mutation and lock it in a signaling-incompetent state. However, covalent inhibition of G12D, the most frequent K-Ras mutation particularly prevalent in pancreatic ductal adenocarcinoma, has remained elusive due to the lack of aspartate-targeting chemistry. Here we present a set of malolactone-based electrophiles that exploit ring strain to crosslink K-Ras-G12D at the mutant aspartate to form stable covalent complexes. Structural insights from X-ray crystallography and exploitation of the stereoelectronic requirements for attack of the electrophile allowed development of a substituted malolactone that resisted attack by aqueous buffer but rapidly crosslinked with the aspartate-12 of K-Ras in both GDP and GTP state. The GTP-state targeting allowed effective suppression of downstream signaling, and selective inhibition of K-Ras-G12D-driven cancer cell proliferation in vitro and xenograft growth in mice.

3.
Anal Chem ; 95(50): 18344-18351, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38060502

ABSTRACT

Protein properties and interactions have been widely investigated by using external labels. However, the micromolar sensitivity of the current dyes limits their applicability due to the high material consumption and assay cost. In response to this challenge, we synthesized a series of cyanine5 (Cy5) dye-based quencher molecules to develop an external dye technique to probe proteins at the nanomolar protein level in a high-throughput one-step assay format. Several families of Cy5 dye-based quenchers with ring and/or side-chain modifications were designed and synthesized by introducing organic small molecules or peptides. Our results showed that steric hindrance and electrostatic interactions are more important than hydrophobicity in the interaction between the luminescent negatively charged europium-chelate-labeled peptide (Eu-probe) and the quencher molecules. The presence of substituents on the quencher indolenine rings reduces their quenching property, whereas the increased positive charge on the indolenine side chain improved the interaction between the quenchers and the luminescent compound. The designed quencher structures entirely altered the dynamics of the Eu-probe (protein-probe) for studying protein stability and interactions, as we were able to reduce the quencher concentration 100-fold. Moreover, the new quencher molecules allowed us to conduct the experiments using neutral buffer conditions, known as the peptide-probe assay. These improvements enabled us to apply the method in a one-step format for nanomolar protein-ligand interaction and protein profiling studies instead of the previously developed two-step protocol. These improvements provide a faster and simpler method with lower material consumption.


Subject(s)
Coloring Agents , Peptides , Carbocyanines/chemistry , Peptides/chemistry , Luminescence , Fluorescent Dyes/chemistry
4.
bioRxiv ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38045405

ABSTRACT

G-protein-coupled receptors (GPCRs) regulate several physiological and pathological processes and represent the target of approximately 30% of FDA-approved drugs. GPCR-mediated signaling was thought to occur exclusively at the plasma membrane. However, recent studies have unveiled their presence and function at subcellular membrane compartments. There is a growing interest in studying compartmentalized signaling of GPCRs. This requires development of novel tools to separate GPCRs signaling at the plasma membrane from the ones initiated at intracellular compartments. We took advantage of the structural and pharmacological information available for ß1-adrenergic receptor (ß1AR), an exemplary GPCR that functions at subcellular compartments, and rationally designed spatially restricted antagonists. We generated a cell impermeable ß1AR antagonist by conjugating a suitable pharmacophore to a sulfonate-containing fluorophore. This cell-impermeable antagonist only inhibited ß1AR on the plasma membrane. In contrast, a cell permeable ß1AR agonist containing a non-sulfonated fluorophore, efficiently inhibited both the plasma membrane and Golgi pools of ß1ARs. Furthermore, the cell impermeable antagonist selectively inhibited the phosphorylation of downstream effectors of PKA proximal to the plasma membrane in adult cardiomyocytes while ß1AR intracellular pool remained active. Our tools offer promising avenues for investigating compartmentalized ß1AR signaling in various context, potentially advancing our understanding of ß1AR-mediated cellular responses in health and disease. They also offer a general strategy to study compartmentalized signaling for other GPCRs in various biological systems.

5.
STAR Protoc ; 4(4): 102688, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37943662

ABSTRACT

Differential scanning fluorimetry (DSF) is a widely used technique for determining the apparent melting temperature (Tma) of a purified protein. Here, we present a protocol for performing and optimizing DSF experiments. We describe steps for designing and performing the experiment, analyzing data, and optimization. We provide benchmarks for typical Tmas and ΔTmas, standard assay conditions, and upper and lower limits of commonly altered experimental variables. We also detail common pitfalls of DSF and ways to avoid, identify, and overcome them.


Subject(s)
Amines , Proteins , Calorimetry, Differential Scanning , Temperature , Fluorometry/methods
6.
Nat Commun ; 14(1): 6030, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758692

ABSTRACT

Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.


Subject(s)
COVID-19 , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/genetics , Influenza, Human/genetics , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Proteomics , Virus Replication/genetics , SARS-CoV-2 , Antiviral Agents/metabolism , Host-Pathogen Interactions/genetics
7.
ACS Chem Biol ; 18(9): 2082-2093, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37579045

ABSTRACT

Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.


Subject(s)
Signal Transduction , ras Proteins , ras Proteins/metabolism , Cell Membrane/metabolism , Molecular Dynamics Simulation , Lipids , Proto-Oncogene Proteins p21(ras)/genetics
8.
Nature ; 620(7972): 163-171, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37495694

ABSTRACT

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Subject(s)
Ambystoma mexicanum , Biological Evolution , Protein Biosynthesis , Regeneration , TOR Serine-Threonine Kinases , Animals , Humans , Mice , Ambystoma mexicanum/physiology , Amino Acid Sequence , Extremities/physiology , Regeneration/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , TOR Serine-Threonine Kinases/metabolism , Wound Healing , Mechanistic Target of Rapamycin Complex 1/metabolism , Species Specificity , Antioxidants/metabolism , Nutrients/metabolism , Polyribosomes/genetics , Polyribosomes/metabolism
9.
Cell Rep ; 42(8): 112868, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37494188

ABSTRACT

Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.


Subject(s)
Proteostasis , Receptor, Insulin , RNA, Messenger/metabolism , Receptor, Insulin/metabolism , TOR Serine-Threonine Kinases/metabolism , Sirolimus , Protein Biosynthesis
10.
Mol Cell Proteomics ; 22(4): 100522, 2023 04.
Article in English | MEDLINE | ID: mdl-36863607

ABSTRACT

PKC epsilon (PKCε) plays important roles in behavioral responses to alcohol and in anxiety-like behavior in rodents, making it a potential drug target for reducing alcohol consumption and anxiety. Identifying signals downstream of PKCε could reveal additional targets and strategies for interfering with PKCε signaling. We used a chemical genetic screen combined with mass spectrometry to identify direct substrates of PKCε in mouse brain and validated findings for 39 of them using peptide arrays and in vitro kinase assays. Prioritizing substrates with several public databases such as LINCS-L1000, STRING, GeneFriends, and GeneMAINA predicted interactions between these putative substrates and PKCε and identified substrates associated with alcohol-related behaviors, actions of benzodiazepines, and chronic stress. The 39 substrates could be broadly classified in three functional categories: cytoskeletal regulation, morphogenesis, and synaptic function. These results provide a list of brain PKCε substrates, many of which are novel, for future investigation to determine the role of PKCε signaling in alcohol responses, anxiety, responses to stress, and other related behaviors.


Subject(s)
Protein Kinase C-epsilon , Signal Transduction , Mice , Animals , Protein Kinase C-epsilon/genetics , Protein Kinase C-epsilon/metabolism , Ethanol , Alcohol Drinking/genetics , Brain/metabolism
11.
Nat Cancer ; 4(2): 240-256, 2023 02.
Article in English | MEDLINE | ID: mdl-36759733

ABSTRACT

BRAFV600E mutation confers a poor prognosis in metastatic colorectal cancer (CRC) despite combinatorial targeted therapies based on the latest understanding of signaling circuitry. To identify parallel resistance mechanisms induced by BRAF-MEK-EGFR co-targeting, we used a high-throughput kinase activity mapping platform. Here we show that SRC kinases are systematically activated in BRAFV600E CRC following targeted inhibition of BRAF ± EGFR and that coordinated targeting of SRC with BRAF ± EGFR increases treatment efficacy in vitro and in vivo. SRC drives resistance to BRAF ± EGFR targeted therapy independently of ERK signaling by inducing transcriptional reprogramming through ß-catenin (CTNNB1). The EGFR-independent compensatory activation of SRC kinases is mediated by an autocrine prostaglandin E2 loop that can be blocked with cyclooxygenase-2 (COX2) inhibitors. Co-targeting of COX2 with BRAF + EGFR promotes durable suppression of tumor growth in patient-derived tumor xenograft models. COX2 inhibition represents a drug-repurposing strategy to overcome therapeutic resistance in BRAFV600E CRC.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Cyclooxygenase 2/genetics , Cyclooxygenase 2/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , MAP Kinase Signaling System , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , ErbB Receptors/genetics , src-Family Kinases/genetics , src-Family Kinases/therapeutic use
12.
Cancer Discov ; 13(1): 56-69, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36197521

ABSTRACT

The transcription factor and tumor suppressor protein p53 is the most frequently mutated and inactivated gene in cancer. Mutations in p53 result in deregulated cell proliferation and genomic instability, both hallmarks of cancer. There are currently no therapies available that directly target mutant p53 to rescue wild-type function. In this study, we identify covalent compsounds that selectively react with the p53 somatic mutant cysteine Y220C and restore wild-type thermal stability. SIGNIFICANCE: The tumor suppressor p53 is the most mutated gene in cancer, and yet no therapeutics to date directly target the mutated protein to rescue wild-type function. In this study, we identify the first allele-specific compound that selectively reacts with the cysteine p53 Y220C to rescue wild-type thermal stability and gene activation. See related commentary by Lane and Verma, p. 14. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cysteine/genetics , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism
13.
Science ; 378(6624): 1097-1104, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36480603

ABSTRACT

The search for cell-permeable drugs has conventionally focused on low-molecular weight (MW), nonpolar, rigid chemical structures. However, emerging therapeutic strategies break traditional drug design rules by employing flexibly linked chemical entities composed of more than one ligand. Using complementary genome-scale chemical-genetic approaches we identified an endogenous chemical uptake pathway involving interferon-induced transmembrane proteins (IFITMs) that modulates the cell permeability of a prototypical biopic inhibitor of MTOR (RapaLink-1, MW: 1784 g/mol). We devised additional linked inhibitors targeting BCR-ABL1 (DasatiLink-1, MW: 1518 g/mol) and EIF4A1 (BisRoc-1, MW: 1466 g/mol), uptake of which was facilitated by IFITMs. We also found that IFITMs moderately assisted some proteolysis-targeting chimeras and examined the physicochemical requirements for involvement of this uptake pathway.

14.
Cancer Cell ; 40(9): 1060-1069.e7, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36099883

ABSTRACT

Immunotargeting of tumor-specific antigens is a powerful therapeutic strategy. Immunotherapies directed at MHC-I complexes have expanded the scope of antigens and enabled the direct targeting of intracellular oncoproteins at the cell surface. We asked whether covalent drugs that alkylate mutated residues on oncoproteins could act as haptens to generate unique MHC-I-restricted neoantigens. Here, we report that KRAS G12C mutant cells treated with the covalent inhibitor ARS1620 present ARS1620-modified peptides in MHC-I complexes. Using ARS1620-specific antibodies identified by phage display, we show that these haptenated MHC-I complexes can serve as tumor-specific neoantigens and that a bispecific T cell engager construct based on a hapten-specific antibody elicits a cytotoxic T cell response against KRAS G12C cells, including those resistant to direct KRAS G12C inhibition. With multiple K-RAS G12C inhibitors in clinical use or undergoing clinical trials, our results present a strategy to enhance their efficacy and overcome the rapidly arising tumor resistance.


Subject(s)
Antineoplastic Agents , Histocompatibility Antigens Class I/immunology , Neoplasms , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Antibodies , Antineoplastic Agents/pharmacology , Humans , Immunologic Factors , Immunotherapy , Peptides/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics
15.
Proc Natl Acad Sci U S A ; 119(38): e2204083119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095197

ABSTRACT

Mammalian target of rapamycin (mTOR) is a highly conserved eukaryotic protein kinase that coordinates cell growth and metabolism, and plays a critical role in cancer, immunity, and aging. It remains unclear how mTOR signaling in individual tissues contributes to whole-organism processes because mTOR inhibitors, like the natural product rapamycin, are administered systemically and target multiple tissues simultaneously. We developed a chemical-genetic system, termed selecTOR, that restricts the activity of a rapamycin analog to specific cell populations through targeted expression of a mutant FKBP12 protein. This analog has reduced affinity for its obligate binding partner FKBP12, which reduces its ability to inhibit mTOR in wild-type cells and tissues. Expression of the mutant FKBP12, which contains an expanded binding pocket, rescues the activity of this rapamycin analog. Using this system, we show that selective mTOR inhibition can be achieved in Saccharomyces cerevisiae and human cells, and we validate the utility of our system in an intact metazoan model organism by identifying the tissues responsible for a rapamycin-induced developmental delay in Drosophila.


Subject(s)
Protein Kinase Inhibitors , Sirolimus , TOR Serine-Threonine Kinases , Humans , Organ Specificity , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Tacrolimus Binding Protein 1A/genetics , Tacrolimus Binding Protein 1A/metabolism
16.
Sci Transl Med ; 14(662): eabj8670, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36103516

ABSTRACT

The low-density lipoprotein receptor (LDLR) controls cellular delivery of cholesterol and clears LDL from the bloodstream, protecting against atherosclerotic heart disease, the leading cause of death in the United States. We therefore sought to identify regulators of the LDLR beyond the targets of current therapies and known causes of familial hypercholesterolemia. We found that cold shock domain-containing protein E1 (CSDE1) enhanced hepatic LDLR messenger RNA (mRNA) decay via its 3' untranslated region and regulated atherogenic lipoproteins in vivo. Using parallel phenotypic genome-wide CRISPR interference screens in a tissue culture model, we identified 40 specific regulators of the LDLR that were not previously identified by observational human genetic studies. Among these, we demonstrated that, in HepG2 cells, CSDE1 regulated the LDLR at least as strongly as statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. In addition, we showed that hepatic gene silencing of Csde1 treated diet-induced dyslipidemia in mice to a similar degree as Pcsk9 silencing. These results suggest the therapeutic potential of targeting CSDE1 to manipulate the posttranscriptional regulation of the LDLR mRNA for the prevention of cardiovascular disease. Our approach of modeling a clinically relevant phenotype in a forward genetic screen, followed by mechanistic pharmacologic dissection and in vivo validation, may serve as a generalizable template for the identification of therapeutic targets in other human disease states.


Subject(s)
Cold-Shock Response , DNA-Binding Proteins/metabolism , Proprotein Convertase 9 , RNA-Binding Proteins/metabolism , Animals , Humans , Mice , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA, Messenger/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , Transcription, Genetic
17.
Nature ; 609(7928): 822-828, 2022 09.
Article in English | MEDLINE | ID: mdl-36104566

ABSTRACT

On-target-off-tissue drug engagement is an important source of adverse effects that constrains the therapeutic window of drug candidates1,2. In diseases of the central nervous system, drugs with brain-restricted pharmacology are highly desirable. Here we report a strategy to achieve inhibition of mammalian target of rapamycin (mTOR) while sparing mTOR activity elsewhere through the use of the brain-permeable mTOR inhibitor RapaLink-1 and the brain-impermeable FKBP12 ligand RapaBlock. We show that this drug combination mitigates the systemic effects of mTOR inhibitors but retains the efficacy of RapaLink-1 in glioblastoma xenografts. We further present a general method to design cell-permeable, FKBP12-dependent kinase inhibitors from known drug scaffolds. These inhibitors are sensitive to deactivation by RapaBlock, enabling the brain-restricted inhibition of their respective kinase targets.


Subject(s)
Brain , MTOR Inhibitors , Sirolimus , TOR Serine-Threonine Kinases , Humans , Brain/drug effects , Brain/metabolism , Drug Therapy, Combination , Glioblastoma/drug therapy , Ligands , MTOR Inhibitors/metabolism , MTOR Inhibitors/pharmacokinetics , MTOR Inhibitors/pharmacology , Sirolimus/analogs & derivatives , Tacrolimus Binding Protein 1A/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
18.
Cell ; 185(21): 3950-3965.e25, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36170854

ABSTRACT

The G protein-coupled receptor cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable proteins, with the exception of the Gα subunit, Gαs. GTPases remain largely undruggable given the difficulty of displacing high-affinity guanine nucleotides and the lack of other drug binding sites. We explored a chemical library of 1012 cyclic peptides to expand the chemical search for inhibitors of this enzyme class. We identified two macrocyclic peptides, GN13 and GD20, that antagonize the active and inactive states of Gαs, respectively. Both macrocyclic peptides fine-tune Gαs activity with high nucleotide-binding-state selectivity and G protein class-specificity. Co-crystal structures reveal that GN13 and GD20 distinguish the conformational differences within the switch II/α3 pocket. Cell-permeable analogs of GN13 and GD20 modulate Gαs/Gßγ signaling in cells through binding to crystallographically defined pockets. The discovery of cyclic peptide inhibitors targeting Gαs provides a path for further development of state-dependent GTPase inhibitors.


Subject(s)
Peptides , Receptors, G-Protein-Coupled , GTP Phosphohydrolases , Guanine Nucleotides , Nucleotides , Peptides/chemistry , Peptides, Cyclic/pharmacology
19.
ACS Chem Biol ; 17(10): 2710-2715, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36166818

ABSTRACT

While there has been recent success in the development of KRasG12C inhibitors, unmet needs for selective inhibitors of KRasG12D and the remaining oncogenic KRas proteins remain. Here, we applied trifluoromethyl-containing ligands of KRas proteins as competitive probe ligands to assay the occupancy of the switch II pocket by 19F NMR spectroscopy. Structure-activity-relationship studies of probe ligands increased the sensitivity of the assay and identified structures that differentially detected each nucleotide state of KRasG12D. These differences in selectivity, combined with the high resolution of 19F NMR spectroscopy, enabled this method to be expanded to assay both nucleotide states of the protein simultaneously.


Subject(s)
Fluorine , Genes, ras , Ligands , Magnetic Resonance Spectroscopy , Nucleotides , Proto-Oncogene Proteins p21(ras)/genetics , Mutation
20.
J Am Chem Soc ; 144(35): 15916-15921, 2022 09 07.
Article in English | MEDLINE | ID: mdl-36001446

ABSTRACT

KRAS mutations are one of the most common oncogenic drivers in human cancer. While small molecule inhibitors for the G12C mutant have been successfully developed, allele-specific inhibition for other KRAS hotspot mutants remains challenging. Here we report the discovery of covalent chemical ligands for the common oncogenic mutant K-Ras(G12R). These ligands bind in the Switch II pocket and irreversibly react with the mutant arginine residue. An X-ray crystal structure reveals an imidazolium condensation product formed between the α,ß-diketoamide ligand and the ε- and η-nitrogens of arginine 12. Our results show that arginine residues can be selectively targeted with small molecule electrophiles despite their weak nucleophilicity and provide the basis for the development of mutant-specific therapies for K-Ras(G12R)-driven cancer.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Arginine , Genes, ras , Humans , Ligands , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...