Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37840983

ABSTRACT

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

2.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37639600

ABSTRACT

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Subject(s)
Oryza , Oryza/genetics , Cytokinins/genetics , Purine Nucleosides , N-Glycosyl Hydrolases/genetics , Nucleosides , Cell Wall/genetics
3.
Breed Sci ; 69(1): 68-83, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31086485

ABSTRACT

The fungal pathogen Pyricularia oryzae causes blast, a severe disease of rice (Oryza sativa L.). Improving blast resistance is important in rice breeding programs. Inoculation tests have been used to select for resistance genotypes, with DNA marker-based selection becoming an efficient alternative. No comprehensive DNA marker system for race-specific resistance alleles in the Japanese rice breeding program has been developed because some loci contain multiple resistance alleles. Here, we used the Fluidigm SNP genotyping platform to determine a set of 96 single nucleotide polymorphism (SNP) markers for 10 loci with race-specific resistance. The markers were then used to evaluate the presence or absence of 24 resistance alleles in 369 cultivars; results were 93.5% consistent with reported inoculation test-based genotypes in japonica varieties. The evaluation system was successfully applied to high-yield varieties with indica genetic backgrounds. The system includes polymorphisms that distinguish the resistant alleles at the tightly linked Pita and Pita-2 loci, thereby confirming that all the tested cultivars with Pita-2 allele carry Pita allele. We also developed and validated insertion/deletion (InDel) markers for ten resistance loci. Combining SNP and InDel markers is an accurate and efficient strategy for selection for race-specific resistance to blast in breeding programs.

4.
Plant Cell Physiol ; 57(9): 1828-38, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27318280

ABSTRACT

Flowering time is one of the most important agronomic traits in rice (Oryza sativa L.), because it defines harvest seasons and cultivation areas, and affects yields. We used a map-based strategy to clone Heading date 18 (Hd18). The difference in flowering time between the Japanese rice cultivars Koshihikari and Hayamasari was due to a single nucleotide polymorphism within the Hd18 gene, which encodes an amine oxidase domain-containing protein and is homologous to Arabidopsis FLOWERING LOCUS D (FLD). The Hayamasari Hd18 allele and knockdown of Hd18 gene expression delayed the flowering time of rice plants regardless of the day-length condition. Structural modeling of the Hd18 protein suggested that the non-synonymous substitution changed protein stability and function due to differences in interdomain hydrogen bond formation. Compared with those in Koshihikari, the expression levels of the flowering-time genes Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and Rice flowering locus T1 (RFT1) were lower in a near-isogenic line with the Hayamasari Hd18 allele in a Koshihikari genetic background. We revealed that Hd18 acts as an accelerator in the rice flowering pathway under both short- and long-day conditions by elevating transcription levels of Ehd1 Gene expression analysis also suggested the involvement of MADS-box genes such as OsMADS50, OsMADS51 and OsMADS56 in the Hd18-associated regulation of Ehd1 These results suggest that, like FLD, its rice homolog accelerates flowering time but is involved in rice flowering pathways that differ from the autonomous pathways in Arabidopsis.


Subject(s)
Flowers/physiology , Histone Acetyltransferases/metabolism , Oryza/physiology , Plant Proteins/metabolism , Arabidopsis Proteins/genetics , Cloning, Molecular , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Genetic Complementation Test , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histone Deacetylases/genetics , MADS Domain Proteins/genetics , Oryza/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA Interference
5.
Theor Appl Genet ; 129(3): 631-40, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26747044

ABSTRACT

KEY MESSAGE: A QTL for cold tolerance at the booting stage of rice cultivar 'Kuchum' was detected and delimited into a 1.36 Mb region, and a cold-tolerant line was developed by QTL pyramiding. Low temperature in summer causes pollen sterility in rice, resulting in a serious loss of yield. The second most widely grown rice cultivar in Japan, 'Hitomebore', has been developed as a cultivar highly tolerant to low temperature at the booting stage. However, even 'Hitomebore' exhibits sterility at a temperature lower than 18.5 °C. Further improvement of cold tolerance of rice is required. In the present study, QTLs for cold tolerance in a Bhutanese rice variety, 'Kuchum', were analyzed using backcrossed progenies and a major QTL, named qCT-4, was detected on chromosome 4. Evaluating cold tolerance of seven types of near isogenic lines having 'Kuchum' alleles around qCT-4 with a 'Hitomebore' genetic background, qCT-4 was delimited to a region of ca. 1.36 Mb between DNA markers 9_1 and 10_13. Homozygous 'Kuchum' alleles at qCT-4 showed an effect of increasing seed fertility by ca. 10 % under cold-water treatment. Near isogenic lines of 'Hitomebore' having 'Silewah' alleles of Ctb1 and Ctb2 and a 'Hokkai PL9' allele of qCTB8 did not exhibit higher cold tolerance than that of 'Hitomebore'. On the other hand, a qLTB3 allele derived from a Chinese cultivar 'Lijiangxintuanheigu' increased cold tolerance of 'Hitomebore', and pyramiding of the qCT-4 allele and the qLTB3 allele further increased seed fertility under cold-water treatment. Since NILs of 'Hitomebore' with the 'Kuchum' allele of qCT-4 were highly similar to 'Hitomebore' in other agronomic traits, the qCT-4 allele is considered to be useful for developing a cold-tolerant cultivar.


Subject(s)
Breeding , Cold Temperature , Oryza/genetics , Quantitative Trait Loci , Adaptation, Physiological/genetics , Alleles , Crosses, Genetic , Genetic Markers , Genotype
6.
Breed Sci ; 65(4): 308-18, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26366113

ABSTRACT

Grain shape is an important trait for improving rice yield. A number of quantitative trait loci (QTLs) for this trait have been identified by using primary F2 mapping populations and recombinant inbred lines, in which QTLs with a small effect are harder to detect than they would be in advanced generations. In this study, we developed two advanced mapping populations (chromosome segment substitution lines [CSSLs] and BC4F2 lines consisting of more than 2000 individuals) in the genetic backgrounds of two improved cultivars: a japonica cultivar (Koshihikari) with short, round grains, and an indica cultivar (IR64) with long, slender grains. We compared the ability of these materials to reveal QTLs for grain shape with that of an F2 population. Only 8 QTLs for grain length or grain width were detected in the F2 population, versus 47 in the CSSL population and 65 in the BC4F2 population. These results strongly suggest that advanced mapping populations can reveal QTLs for agronomic traits under complicated genetic control, and that DNA markers linked with the QTLs are useful for choosing superior allelic combinations to enhance grain shape in the Koshihikari and IR64 genetic backgrounds.

7.
Breed Sci ; 65(3): 249-56, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26175622

ABSTRACT

Insertion-deletion (indel) polymorphisms, such as simple sequence repeats, have been widely used as DNA markers to identify QTLs and genes and to facilitate rice breeding. Recently, next-generation sequencing has produced deep sequences that allow genome-wide detection of indels. These polymorphisms can potentially be used to develop high-accuracy polymerase chain reaction (PCR)-based markers. Here, re-sequencing of 5 indica, 2 aus, and 3 tropical japonica cultivars and Japanese elite cultivar 'Koshihikari' was performed to extract regions containing large indels (10-51 bp) shared by diverse cultivars. To design indel markers for the discrimination of genomic regions between 'Koshihikari' and other diverse cultivars, we subtracted the indel regions detected in 'Koshihikari' from those shared in other cultivars. Two sets of indel markers, KNJ8-indel (shared in eight or more cultivars, including 'Khao Nam Jen' as a representative tropical japonica cultivar) and C5-indel (shared in five to eight cultivars), were established, with 915 and 9,899 indel regions, respectively. Validation of the two marker sets by using 23 diverse cultivars showed a high PCR success rate (≥95%) for 83.3% of the KNJ8-indel markers and 73.9% of the C5-indel markers. The marker sets will therefore be useful for the effective breeding of Japanese rice cultivars.

8.
BMC Plant Biol ; 15: 115, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25953146

ABSTRACT

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Subject(s)
Ecotype , Flowers/genetics , Flowers/physiology , Oryza/genetics , Oryza/physiology , Alleles , Chromosomes, Plant/genetics , Crosses, Genetic , Models, Genetic , Photoperiod , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Reproducibility of Results
9.
Sci Rep ; 3: 2149, 2013.
Article in English | MEDLINE | ID: mdl-23985993

ABSTRACT

Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity.


Subject(s)
Oryza/genetics , Oryza/metabolism , Photosynthesis/genetics , Plant Leaves/metabolism , Quantitative Trait Loci , Alleles , Breeding , Carbon Dioxide/metabolism , Chromosome Mapping , Cloning, Molecular , Gene Expression Regulation, Plant , Gene Order , Kinetics , Oryza/growth & development , Phenotype , Sunlight
10.
Theor Appl Genet ; 122(6): 1199-210, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21229229

ABSTRACT

To dissect the genetic factors controlling naturally occurring variation of heading date in Asian rice cultivars, we performed QTL analyses using F(2) populations derived from crosses between a japonica cultivar, Koshihikari, and each of 12 cultivars originating from various regions in Asia. These 12 diverse cultivars varied in heading date under natural field conditions in Tsukuba, Japan. Transgressive segregation was observed in 10 F(2) combinations. QTL analyses using multiple crosses revealed a comprehensive series of loci involved in natural variation in flowering time. One to four QTLs were detected in each cross combination, and some QTLs were shared among combinations. The chromosomal locations of these QTLs corresponded well with those detected in other studies. The allelic effects of the QTLs varied among the cross combinations. Sequence analysis of several previously cloned genes controlling heading date, including Hd1, Hd3a, Hd6, RFT1, and Ghd7, identified several functional polymorphisms, indicating that allelic variation at these loci probably contributes to variation in heading date. Taken together, the QTL and sequencing results indicate that a large portion of the phenotypic variation in heading date in Asian rice cultivars could be generated by combinations of different alleles (possibly both loss- and gain-of-function) of the QTLs detected in this study.


Subject(s)
Genetic Variation , Oryza/genetics , Quantitative Trait Loci , Amino Acid Sequence , Base Sequence , Crops, Agricultural/genetics , Genetic Linkage , Genetic Markers , Genotype , Humans , Molecular Sequence Data , Phenotype , Sequence Analysis, DNA
11.
Curr Opin Plant Biol ; 12(2): 185-92, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19185529

ABSTRACT

Crop domestication can be considered a model system of plant evolution. Genome analyses of rice have revealed the fine population structure of this major crop associated with local origins of landraces. Recent cloning of rice domestication-related genes and identification of the responsible functional nucleotide polymorphisms in landraces, while taking into account their population structures, have revealed the existence of historical signatures of the DNA involved in the domestication process. These signatures imply the importance of multiple selection steps wherein natural variants were combined to improve crop performance during domestication. These analyses will provide new insights into the relationship between Darwinian selection for agronomical phenotypes and DNA changes in terms of plant evolution.


Subject(s)
Crops, Agricultural/genetics , DNA, Plant/genetics , Oryza/genetics , Archaeology , Biological Evolution , Models, Genetic
12.
Nat Genet ; 40(8): 1023-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18604208

ABSTRACT

The domestication of crops involves a complex process of selection in plant evolution and is associated with changes in the DNA regulating agronomically important traits. Here we report the cloning of a newly identified QTL, qSW5 (QTL for seed width on chromosome 5), involved in the determination of grain width in rice. Through fine mapping, complementation testing and association analysis, we found that a deletion in qSW5 resulted in a significant increase in sink size owing to an increase in cell number in the outer glume of the rice flower; this trait might have been selected by ancient humans to increase yield of rice grains. In addition, we mapped two other defective functional nucleotide polymorphisms of rice domestication-related genes with genome-wide RFLP polymorphisms of various rice landraces. These analyses show that the qSW5 deletion had an important historical role in artificial selection, propagation of cultivation and natural crossings in rice domestication, and shed light on how the rice genome was domesticated.


Subject(s)
Chromosomes, Plant , Crops, Agricultural/genetics , Edible Grain/genetics , Gene Deletion , Oryza/genetics , Asia , Chromosome Mapping , Cloning, Molecular , Crops, Agricultural/anatomy & histology , Edible Grain/anatomy & histology , Flowers/anatomy & histology , Flowers/genetics , Molecular Sequence Data , Oryza/anatomy & histology , Polymorphism, Restriction Fragment Length , Quantitative Trait Loci
13.
Theor Appl Genet ; 116(6): 881-90, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18274726

ABSTRACT

To understand the genetic basis of yield-related traits of rice, we developed 39 chromosome segment substitution lines (CSSLs) from a cross between an average-yielding japonica cultivar, Sasanishiki, as the recurrent parent and a high-yielding indica cultivar, Habataki, as the donor. Five morphological components of panicle architecture in the CSSLs were evaluated in 2 years, and 38 quantitative trait loci (QTLs) distributed on 11 chromosomes were detected. The additive effect of each QTL was relatively small, suggesting that none of the QTLs could explain much of the phenotypic difference in sink size between Sasanishiki and Habataki. We developed nearly isogenic lines for two major QTLs, qSBN1 (for secondary branch number on chromosome 1) and qPBN6 (for primary branch number on chromosome 6), and a line containing both. Phenotypic analysis of these lines revealed that qSBN1 and qPBN6 contributed independently to sink size and that the combined line produced more spikelets. This suggests that the cumulative effects of QTLs distributed throughout the genome form the major genetic basis of panicle architecture in rice.


Subject(s)
Chromosomes, Plant/genetics , Oryza/genetics , Quantitative Trait Loci , Quantitative Trait, Heritable , Chromosome Mapping , Crosses, Genetic , Oryza/metabolism , Phenotype
14.
Plant Cell ; 14(3): 525-35, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11910001

ABSTRACT

To determine the chromosomal positions of expressed rice genes, we have performed an expressed sequence tag (EST) mapping project by polymerase chain reaction-based yeast artificial chromosome (YAC) screening. Specific primers designed from 6713 unique EST sequences derived from 19 cDNA libraries were screened on 4387 YAC clones and used for map construction in combination with genetic analysis. Here, we describe the establishment of a comprehensive YAC-based rice transcript map that contains 6591 EST sites and covers 80.8% of the rice genome. Chromosomes 1, 2, and 3 have relatively high EST densities, approximately twice those of chromosomes 11 and 12, and contain 41% of the total EST sites on the map. Most of the EST-dense regions are distributed on the distal regions of each chromosome arm. Genomic regions flanking the centromeres for most of the chromosomes have lower EST density. Recombination frequency in these regions is suppressed significantly. Our EST mapping also shows that 40% of the assigned ESTs occupy only approximately 21% of the entire genome. The rice transcript map has been a valuable resource for genetic study, gene isolation, and genome sequencing at the Rice Genome Research Program and should become an important tool for comparative analysis of chromosome structure and evolution among the cereals.


Subject(s)
Chromosome Mapping/methods , Expressed Sequence Tags , Oryza/genetics , Transcription, Genetic/genetics , Chromosomes, Artificial, Yeast/genetics , Cloning, Molecular , Computational Biology , Contig Mapping/methods , Gene Expression Profiling , Gene Library , Genetic Markers , Genome, Plant , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL