Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 8(81): eadf1426, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36867678

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy relies on T cells that are guided by synthetic receptors to target and lyse cancer cells. CARs bind to cell surface antigens through an scFv (binder), the affinity of which is central to determining CAR T cell function and therapeutic success. CAR T cells targeting CD19 were the first to achieve marked clinical responses in patients with relapsed/refractory B cell malignancies and to be approved by the U.S. Food and Drug Administration (FDA). We report cryo-EM structures of CD19 antigen with the binder FMC63, which is used in four FDA-approved CAR T cell therapies (Kymriah, Yescarta, Tecartus, and Breyanzi), and the binder SJ25C1, which has also been used extensively in multiple clinical trials. We used these structures for molecular dynamics simulations, which guided creation of lower- or higher-affinity binders, and ultimately produced CAR T cells endowed with distinct tumor recognition sensitivities. The CAR T cells exhibited different antigen density requirements to trigger cytolysis and differed in their propensity to prompt trogocytosis upon contacting tumor cells. Our work shows how structural information can be applied to tune CAR T cell performance to specific target antigen densities.


Subject(s)
Adaptor Proteins, Signal Transducing , Antigens, CD19 , United States , Humans , Antigens, Surface , B-Lymphocytes , Cell Death
2.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834047

ABSTRACT

Intracellular transport of chloride by members of the CLC transporter family involves a coupled exchange between a Cl- anion and a proton (H+), which makes the transport function dependent on ambient pH. Transport activity peaks at pH 4.5 and stalls at neutral pH. However, a structure of the WT protein at acidic pH is not available, making it difficult to assess the global conformational rearrangements that support a pH-dependent gating mechanism. To enable modeling of the CLC-ec1 dimer at acidic pH, we have applied molecular dynamics simulations (MD) featuring a new force field modification scheme-termed an Equilibrium constant pH approach (ECpH). The ECpH method utilizes linear interpolation between the force field parameters of protonated and deprotonated states of titratable residues to achieve a representation of pH-dependence in a narrow range of physiological pH values. Simulations of the CLC-ec1 dimer at neutral and acidic pH comparing ECpH-MD to canonical MD, in which the pH-dependent protonation is represented by a binary scheme, substantiates the better agreement of the conformational changes and the final model with experimental data from NMR, cross-link and AFM studies, and reveals structural elements that support the gate-opening at pH 4.5, including the key glutamates Gluin and Gluex.


Subject(s)
Antiporters/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Hydrogen-Ion Concentration , Microscopy, Atomic Force , Molecular Dynamics Simulation , Protein Conformation , Protons
3.
Molecules ; 24(11)2019 Jun 02.
Article in English | MEDLINE | ID: mdl-31159491

ABSTRACT

G protein-coupled receptors (GPCRs) play a key role in many cellular signaling mechanisms, and must select among multiple coupling possibilities in a ligand-specific manner in order to carry out a myriad of functions in diverse cellular contexts. Much has been learned about the molecular mechanisms of ligand-GPCR complexes from Molecular Dynamics (MD) simulations. However, to explore ligand-specific differences in the response of a GPCR to diverse ligands, as is required to understand ligand bias and functional selectivity, necessitates creating very large amounts of data from the needed large-scale simulations. This becomes a Big Data problem for the high dimensionality analysis of the accumulated trajectories. Here we describe a new machine learning (ML) approach to the problem that is based on transforming the analysis of GPCR function-related, ligand-specific differences encoded in the MD simulation trajectories into a representation recognizable by state-of-the-art deep learning object recognition technology. We illustrate this method by applying it to recognize the pharmacological classification of ligands bound to the 5-HT2A and D2 subtypes of class-A GPCRs from the serotonin and dopamine families. The ML-based approach is shown to perform the classification task with high accuracy, and we identify the molecular determinants of the classifications in the context of GPCR structure and function. This study builds a framework for the efficient computational analysis of MD Big Data collected for the purpose of understanding ligand-specific GPCR activity.


Subject(s)
Drug Discovery , Ligands , Machine Learning , Quantitative Structure-Activity Relationship , Receptors, G-Protein-Coupled , Algorithms , Binding Sites , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Receptor, Serotonin, 5-HT2A/chemistry , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism
4.
Methods Enzymol ; 593: 449-490, 2017.
Article in English | MEDLINE | ID: mdl-28750815

ABSTRACT

The cannabinoid type 1 and 2 G-protein-coupled receptors are currently important pharmacological targets with significant drug discovery potential. These receptors have been shown to display functional selectivity or biased agonism, a property currently thought to have substantial therapeutic potential. Although recent advances in crystallization techniques have provided a wealth of structural information about this important class of membrane-embedded proteins, these structures lack dynamical information. In order to fully understand the interplay of structure and function for this important class of proteins, complementary techniques that address the dynamical aspects of their function are required such as NMR as well as a variety of other spectroscopies. Complimentary to these experimental approaches is molecular dynamics, which has been effectively used to help unravel, at the atomic level, the dynamics of ligand binding and activation of these membrane-bound receptors. Here, we discuss and present several representative examples of the application of molecular dynamics simulations to the understanding of the signatures of ligand-binding and -biased signaling at the cannabinoid type 1 and 2 receptors.


Subject(s)
Molecular Dynamics Simulation , Receptors, Cannabinoid/chemistry , Animals , Cannabinoid Receptor Modulators/chemistry , Cannabinoids/chemistry , Humans , Ligands , Lipid Bilayers , Phosphatidylcholines/chemistry , Protein Binding , Signal Transduction
5.
Bioorg Med Chem Lett ; 26(7): 1827-1830, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26916440

ABSTRACT

A series of 1,3,4-oxadiazol-2-ones was synthesized and tested for activity as antagonists at GPR55 in cellular beta-arrestin redistribution assays. The synthesis was designed to be modular in nature so that a sufficient number of analogues could be rapidly accessed to explore initial structure-activity relationships. The design of analogues was guided by the docking of potential compounds into a model of the inactive form of GPR55. The results of the assays were used to learn more about the binding pocket of GPR55. With this oxadiazolone scaffold, it was determined that modification of the aryl group adjacent to the oxadiazolone ring was often detrimental and that the distal cyclopropane was beneficial for activity. These results will guide further exploration of this receptor.


Subject(s)
Drug Design , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Piperidines/chemistry , Piperidines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Arrestins/metabolism , CHO Cells , Cricetulus , Humans , Molecular Docking Simulation , Oxadiazoles/chemical synthesis , Piperidines/chemical synthesis , Receptors, Cannabinoid , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship , beta-Arrestins
6.
Front Pharmacol ; 6: 69, 2015.
Article in English | MEDLINE | ID: mdl-25926795

ABSTRACT

The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it's not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands-the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non-cannabinoid, lysophophatidylinositol (LPI) and subsequent high throughput assays have identified other GPR55 ligands that are not cannabinoids and do not bind to either the cannabinoid CB1 and CB2 receptors. Here, we review reports that suggest that GPR35/CXCR8 and GPR55 may be promising therapeutic targets, with diverse physiological roles.

7.
Mol Pharmacol ; 87(2): 197-206, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25411367

ABSTRACT

Some inverse agonists of cannabinoid receptor type 1 (CB1) have been demonstrated to be anorectic antiobesity drug candidates. However, the first generation of CB1 inverse agonists, represented by rimonabant (SR141716A), otenabant, and taranabant, are centrally active, with a high level of psychiatric side effects. Hence, the discovery of CB1 inverse agonists with a chemical scaffold distinct from these holds promise for developing peripherally active CB1 inverse agonists with fewer side effects. We generated a new CB1 inverse agonist, (4-(bis(4-fluorophenyl)methyl)piperazin-1-yl)(cyclohexyl)methanone hydrochloride (LDK1229), from the class of benzhydryl piperazine analogs. This compound binds to CB1 more selectively than cannabinoid receptor type 2, with a Ki value of 220 nM. Comparable CB1 binding was also observed by analogs 1-[bis(4-fluorophenyl)methyl]-4-cinnamylpiperazine dihydrochloride (LDK1203) and 1-[bis(4-fluorophenyl)methyl]-4-tosylpiperazine hydrochloride (LDK1222), which differed by the substitution on the piperazine ring where the piperazine of LDK1203 and LDK1222 are substituted by an alkyl group and a tosyl group, respectively. LDK1229 exhibits efficacy comparable with SR141716A in antagonizing the basal G protein coupling activity of CB1, as indicated by a reduction in guanosine 5'-O-(3-thio)triphosphate binding. Consistent with inverse agonist behavior, increased cell surface localization of CB1 upon treatment with LDK1229 was also observed. Although docking and mutational analysis showed that LDK1229 forms similar interactions with the receptor as SR141716A does, the benzhydryl piperazine scaffold is structurally distinct from the first-generation CB1 inverse agonists. It offers new opportunities for developing novel CB1 inverse agonists through the optimization of molecular properties, such as the polar surface area and hydrophilicity, to reduce the central activity observed with SR141716A.


Subject(s)
Benzhydryl Compounds/pharmacology , Cannabinoids/pharmacology , Drug Inverse Agonism , Piperazines/pharmacology , Receptor, Cannabinoid, CB1/agonists , Animals , Benzhydryl Compounds/chemistry , Cannabinoids/chemistry , Cattle , HEK293 Cells , Humans , Piperazine , Piperazines/chemistry , Protein Binding/physiology , Protein Structure, Secondary , Receptor, Cannabinoid, CB1/metabolism
8.
J Med Chem ; 57(21): 8777-91, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25272206

ABSTRACT

We have recently identified 1,8-naphthyridin-2(1H)-one-3-carboxamide as a new scaffold very suitable for the development of new CB2 receptor potent and selective ligands. In this paper we describe a number of additional derivatives in which the same central scaffold has been variously functionalized in position 1 or 6. All new compounds showed high selectivity and affinity in the nanomolar range for the CB2 receptor. Furthermore, we found that their functional activity is controlled by the presence of the substituents at position C-6 of the naphthyridine scaffold. In fact, the introduction of substituents in this position determined a functionality switch from agonist to antagonists/inverse agonists. Finally, docking studies showed that the difference between the pharmacology of these ligands may be in the ability/inability to block the Toggle Switch W6.48(258) (χ1 g+ → trans) transition.


Subject(s)
Naphthyridines/chemical synthesis , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Cell Line, Tumor , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Naphthyridines/chemistry , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/chemistry , Structure-Activity Relationship
9.
Science ; 343(6166): 94-8, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24385629

ABSTRACT

Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.


Subject(s)
Brain/drug effects , Cannabis/toxicity , Dronabinol/toxicity , Pregnenolone/administration & dosage , Pregnenolone/metabolism , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Animals , Brain/metabolism , Cannabinoid Receptor Antagonists/administration & dosage , Male , Marijuana Abuse/drug therapy , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Rats, Wistar
10.
J Biol Chem ; 289(9): 5828-45, 2014 Feb 28.
Article in English | MEDLINE | ID: mdl-24366865

ABSTRACT

The cannabinoid 1 (CB1) allosteric modulator, 5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide) (ORG27569), has the paradoxical effect of increasing the equilibrium binding of [(3)H](-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl]cyclohexan-1-ol (CP55,940, an orthosteric agonist) while at the same time decreasing its efficacy (in G protein-mediated signaling). ORG27569 also decreases basal signaling, acting as an inverse agonist for the G protein-mediated signaling pathway. In ligand displacement assays, ORG27569 can displace the CB1 antagonist/inverse agonist, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). The goal of this work was to identify the binding site of ORG27569 at CB1. To this end, we used computation, synthesis, mutation, and functional studies to identify the ORG27569-binding site in the CB1 TMH3-6-7 region. This site is consistent with the results of K3.28(192)A, F3.36(200)A, W5.43(279)A, W6.48(356)A, and F3.25(189)A mutation studies, which revealed the ORG27569-binding site overlaps with our previously determined binding site of SR141716A but extends extracellularly. Additionally, we identified a key electrostatic interaction between the ORG27569 piperidine ring nitrogen and K3.28(192) that is important for ORG27569 to act as an inverse agonist. At this allosteric site, ORG27569 promotes an intermediate conformation of the CB1 receptor, explaining ORG27569's ability to increase equilibrium binding of CP55,940. This site also explains ORG27569's ability to antagonize the efficacy of CP55,940 in three complementary ways. 1) ORG27569 sterically blocks movements of the second extracellular loop that have been linked to receptor activation. 2) ORG27569 sterically blocks a key electrostatic interaction between the third extracellular loop residue Lys-373 and D2.63(176). 3) ORG27569 packs against TMH6, sterically hindering movements of this helix that have been shown to be important for receptor activation.


Subject(s)
Cannabinoid Receptor Antagonists/pharmacology , Indoles/pharmacology , Molecular Dynamics Simulation , Piperidines/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Signal Transduction/drug effects , Allosteric Regulation/drug effects , Allosteric Regulation/genetics , Binding Sites , Cannabinoid Receptor Antagonists/chemistry , HEK293 Cells , Humans , Indoles/chemistry , Piperidines/chemistry , Protein Binding , Pyrazoles , Receptor, Cannabinoid, CB1/metabolism , Rimonabant , Signal Transduction/genetics
11.
Biochemistry ; 52(52): 9456-69, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24274581

ABSTRACT

GPR55 is a class A G protein-coupled receptor (GPCR) that has been implicated in inflammatory pain, neuropathic pain, metabolic disorder, bone development, and cancer. Initially deorphanized as a cannabinoid receptor, GPR55 has been shown to be activated by non-cannabinoid ligands such as l-α-lysophosphatidylinositol (LPI). While there is a growing body of evidence of physiological and pathophysiological roles for GPR55, the paucity of specific antagonists has limited its study. In collaboration with the Molecular Libraries Probe Production Centers Network initiative, we identified a series of GPR55 antagonists using a ß-arrestin, high-throughput, high-content screen of ~300000 compounds. This screen yielded novel, GPR55 antagonist chemotypes with IC50 values in the range of 0.16-2.72 µM [Heynen-Genel, S., et al. (2010) Screening for Selective Ligands for GPR55: Antagonists (ML191, ML192, ML193) (Bookshelf ID NBK66153; PMID entry 22091481)]. Importantly, many of the GPR55 antagonists were completely selective, with no agonism or antagonism against GPR35, CB1, or CB2 up to 20 µM. Using a model of the GPR55 inactive state, we studied the binding of an antagonist series that emerged from this screen. These studies suggest that GPR55 antagonists possess a head region that occupies a horizontal binding pocket extending into the extracellular loop region, a central ligand portion that fits vertically in the receptor binding pocket and terminates with a pendant aromatic or heterocyclic ring that juts out. Both the region that extends extracellularly and the pendant ring are features associated with antagonism. Taken together, our results provide a set of design rules for the development of second-generation GPR55 selective antagonists.


Subject(s)
Drug Evaluation, Preclinical , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Binding Sites , Humans , Inhibitory Concentration 50 , Ligands , Models, Molecular , Protein Binding , Receptors, Cannabinoid , Receptors, G-Protein-Coupled/metabolism
12.
J Pharmacol Exp Ther ; 345(2): 189-97, 2013 May.
Article in English | MEDLINE | ID: mdl-23426954

ABSTRACT

Activation of the cannabinoid CB1 receptor (CB1) is modulated by aspartate residue D2.63(176) in transmembrane helix (TMH) 2. Interestingly, D2.63 does not affect the affinity for ligand binding at the CB1 receptor. Studies in class A G protein-coupled receptors have suggested an ionic interaction between residues of TMH2 and 7. In this report, modeling studies identified residue K373 in the extracellular-3 (EC-3) loop in charged interactions with D2.63. We investigated this possibility by performing reciprocal mutations and biochemical studies. D2.63(176)A, K373A, D2.63(176)A-K373A, and the reciprocal mutant with the interacting residues juxtaposed D2.63(176)K-K373D were characterized using radioligand binding and guanosine 5'-3-O-(thio)triphosphate functional assays. None of the mutations resulted in a significant change in the binding affinity of N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A) or (-)-3cis -[2-hydroxyl-4-(1,1-dimethyl-heptyl)phenyl]-trans-4-[3-hydroxyl-propyl] cyclohexan-1-ol (CP55,940). Modeling studies indicated that binding-site interactions and energies of interaction for CP55,940 were similar between wild-type and mutant receptors. However, the signaling of CP55,940, and (R)-(+)-[2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthalenyl)-methanone mesylate (WIN55,212-2) was impaired at the D2.63(176)A-K373A and the single-alanine mutants. In contrast, the reciprocal D2.63(176)K-K373D mutant regained function for both CP55,940 and WIN55,212-2. Computational results indicate that the D2.63(176)-K373 ionic interaction strongly influences the conformation(s) of the EC-3 loop, providing a structure-based rationale for the importance of the EC-3 loop to signal transduction in CB1. The putative ionic interaction results in the EC-3 loop pulling over the top (extracellular side) of the receptor; this EC-3 loop conformation may serve protective and mechanistic roles. These results suggest that the ionic interaction between D2.63(176) and K373 is important for CB1 signal transduction.


Subject(s)
Receptor, Cannabinoid, CB1/drug effects , Amino Acid Sequence , Benzoxazines/pharmacology , Binding, Competitive/drug effects , Cell Line , Cyclohexanols/pharmacology , Energy Metabolism/drug effects , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Immunosuppressive Agents/pharmacology , Models, Chemical , Molecular Sequence Data , Morpholines/pharmacology , Mutagenesis, Site-Directed , Naphthalenes/pharmacology , Piperidines/metabolism , Protein Conformation , Protein Structure, Secondary , Pyrazoles/metabolism , Radioligand Assay , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Rimonabant , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...