Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Neuroimage ; 260: 119460, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35868615

ABSTRACT

Brain-wide patterns in resting human brains, as either structured functional connectivity (FC) or recurring brain states, have been widely studied in the neuroimaging literature. In particular, resting-state FCs estimated over windowed timeframe neuroimaging data from sub-minutes to minutes using correlation or blind source separation techniques have reported many brain-wide patterns of significant behavioral and disease correlates. The present pilot study utilized a novel whole-head cap-based high-density diffuse optical tomography (DOT) technology, together with data-driven analysis methods, to investigate recurring transient brain-wide patterns in spontaneous fluctuations of hemodynamic signals at the resolution of single timeframes from thirteen healthy adults in resting conditions. Our results report that a small number, i.e., six, of brain-wide coactivation patterns (CAPs) describe major spatiotemporal dynamics of spontaneous hemodynamic signals recorded by DOT. These CAPs represent recurring brain states, showing spatial topographies of hemispheric symmetry, and exhibit highly anticorrelated pairs. Moreover, a structured transition pattern among the six brain states is identified, where two CAPs with anterior-posterior spatial patterns are significantly involved in transitions among all brain states. Our results further elucidate two brain states of global positive and negative patterns, indicating transient neuronal coactivations and co-deactivations, respectively, over the entire cortex. We demonstrate that these two brain states are responsible for the generation of a subset of peaks and troughs in global signals (GS), supporting the recent reports on neuronal relevance of hemodynamic GS. Collectively, our results suggest that transient neuronal events (i.e., CAPs), global brain activity, and brain-wide structured transitions co-exist in humans and these phenomena are closely related, which extend the observations of similar neuronal events recently reported in animal hemodynamic data. Future studies on the quantitative relationship among these transient events and their relationships to windowed FCs along with larger sample size are needed to understand their changes with behaviors and diseased conditions.


Subject(s)
Brain Mapping , Brain , Adult , Animals , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Hemodynamics , Humans , Magnetic Resonance Imaging/methods , Pilot Projects , Rest/physiology
2.
Neuroimage ; 260: 119461, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35820583

ABSTRACT

Spontaneous neural activity in human as assessed with resting-state functional magnetic resonance imaging (fMRI) exhibits brain-wide coordinated patterns in the frequency of  < 0.1 Hz. However, understanding of fast brain-wide networks at the timescales of neuronal events (milliseconds to sub-seconds) and their spatial, spectral, and transitional characteristics remain limited due to the temporal constraints of hemodynamic signals. With milli-second resolution and whole-head coverage, scalp-based electroencephalography (EEG) provides a unique window into brain-wide networks with neuronal-timescale dynamics, shedding light on the organizing principles of brain functions. Using the state-of-the-art signal processing techniques, we reconstructed cortical neural tomography from resting-state EEG and extracted component-based co-activation patterns (cCAPs). These cCAPs revealed brain-wide intrinsic networks and their dynamics, indicating the configuration/reconfiguration of resting human brains into recurring and transitional functional states, which are featured with the prominent spatial phenomena of global patterns and anti-state pairs of co-(de)activations. Rich oscillational structures across a wide frequency band (i.e., 0.6 Hz, 5 Hz, and 10 Hz) were embedded in the nonstationary dynamics of these functional states. We further identified a superstructure that regulated between-state immediate and long-range transitions involving the entire set of identified cCAPs and governed a significant aspect of brain-wide network dynamics. These findings demonstrated how resting-state EEG data can be functionally decomposed using cCAPs to reveal rich dynamic structures of brain-wide human neural activations.


Subject(s)
Brain Mapping , Rest , Brain/physiology , Brain Mapping/methods , Electroencephalography/methods , Humans , Magnetic Resonance Imaging/methods , Rest/physiology
3.
Sci Rep ; 12(1): 12140, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35840643

ABSTRACT

Human brains experience whole-brain anatomic and functional changes throughout the lifespan. Age-related whole-brain network changes have been studied with functional magnetic resonance imaging (fMRI) to determine their low-frequency spatial and temporal characteristics. However, little is known about age-related changes in whole-brain fast dynamics at the scale of neuronal events. The present study investigated age-related whole-brain dynamics in resting-state electroencephalography (EEG) signals from 73 healthy participants from 6 to 65 years old via characterizing transient neuronal coactivations at a resolution of tens of milliseconds. These uncovered transient patterns suggest fluctuating brain states at different energy levels of global activations. Our results indicate that with increasing age, shorter lifetimes and more occurrences were observed in the brain states that show the global high activations and more consecutive visits to the global highest-activation brain state. There were also reduced transitional steps during consecutive visits to the global lowest-activation brain state. These age-related effects suggest reduced stability and increased fluctuations when visiting high-energy brain states and with a bias toward staying low-energy brain states. These age-related whole-brain dynamics changes are further supported by changes observed in classic alpha and beta power, suggesting its promising applications in examining the effect of normal healthy brain aging, brain development, and brain disease.


Subject(s)
Brain Mapping , Brain , Adolescent , Adult , Aged , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Child , Electroencephalography/methods , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Neurons , Young Adult
4.
J Neural Eng ; 18(6)2021 11 30.
Article in English | MEDLINE | ID: mdl-34670201

ABSTRACT

Objective. Heterogeneous clinical responses to treatment with non-invasive brain stimulation are commonly observed, making it necessary to determine personally optimized stimulation parameters. We investigated neuroimaging markers of effective brain targets of treatment with continuous theta burst stimulation (cTBS) in mal de débarquement syndrome (MdDS), a balance disorder of persistent oscillating vertigo previously shown to exhibit abnormal intrinsic functional connectivity.Approach.Twenty-four right-handed, cTBS-naive individuals with MdDS received single administrations of cTBS over one of three stimulation targets in randomized order. The optimal target was determined based on the assessment of acute changes after the administration of cTBS over each target. Repetitive cTBS sessions were delivered on three consecutive days with the optimal target chosen by the participant. Electroencephalography (EEG) was recorded at single-administration test sessions of cTBS. Simultaneous EEG and functional MRI data were acquired at baseline and after completion of 10-12 sessions. Network connectivity changes after single and repetitive stimulations of cTBS were analyzed.Main results.Using electrophysiological source imaging and a data-driven method, we identified network-level connectivity changes in EEG that correlated with symptom responses after completion of multiple sessions of cTBS. We further determined that connectivity changes demonstrated by EEG during test sessions of single administrations of cTBS were signatures that could predict optimal targets.Significance.Our findings demonstrate the effect of cTBS on resting state brain networks and suggest an imaging-based, closed-loop stimulation paradigm that can identify optimal targets during short-term test sessions of stimulation.ClinicalTrials.gov Identifier:NCT02470377.


Subject(s)
Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Brain/physiology , Electroencephalography/methods , Humans , Transcranial Magnetic Stimulation/methods , Travel-Related Illness
5.
J Neural Eng ; 17(2): 026016, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32106106

ABSTRACT

OBJECTIVE: Functional connectivity (FC) dynamics have been studied in functional magnetic resonance imaging (fMRI) data, while it is largely unknown in electrophysiological data, e.g. EEG. APPROACH: The present study proposed a novel analytic framework to study spatiotemporal dynamics of FC (dFC) in resting-state human EEG data, including independent component analysis, cortical source imaging, sliding-window correlation analysis, and k-means clustering. MAIN RESULTS: Our results confirm that major fMRI intrinsic connectivity networks (ICNs) can be successfully reconstructed from EEG using our analytic framework. Prominent spatial and temporal variability were revealed in these ICNs. The mean dFC spatial patterns of individual ICNs resemble their corresponding static FC (sFC) patterns but show fewer cross-talks among distinct ICNs. Our investigation unveils evidences of time-domain variations in individual ICNs comparable to their mean FC level in terms of magnitude. The major contributors to these variations are from the frequency below 0.0156 Hz, in the similar range of FC dynamics from fMRI data. Among different ICNs, larger temporal variabilities are observed in the frontal attention and auditory/visual ICNs, while sensorimotor, salience, and default model networks showed less. Our analytic framework for the first time revealed quasi-stable states within individual EEG ICNs, with various strengths or spatial patterns that were reliably detected at both group and individual levels. These states all together reveal a more complete picture of EEG ICNs: (1) quasi-stable state spatial patterns as a whole for each EEG ICN are more consistent with the corresponding fMRI ICN in terms of the bilateral distribution and multi-nodes structure; (2) EEG ICNs reveal more transient patterns about within-ICN between-node communications than fMRI ICNs. SIGNIFICANCE: The present findings highlight the fact that rich temporal and spatial dynamics exist in ICN that can be detected from EEG data. Future studies might extend investigations towards spectral dynamics of EEG ICNs.


Subject(s)
Brain Mapping , Brain , Brain/diagnostic imaging , Electroencephalography , Electrophysiological Phenomena , Humans , Magnetic Resonance Imaging
6.
Brain Connect ; 9(4): 311-321, 2019 05.
Article in English | MEDLINE | ID: mdl-30803271

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used to treat many neurological and neuropsychiatric disorders. However, the clinical response is heterogeneous mainly due to our inability to predict the effect of rTMS on the human brain. Our previous investigation based on functional magnetic resonance imaging (fMRI) suggested that neuroimaging-guided navigation for rTMS could be informed by understanding connectivity patterns that correlate with treatment response. In this study, 20 individuals with a balance disorder called Mal de Debarquement Syndrome completed high-density resting-state electroencephalogram (EEG) and fMRI recordings before and after 5 days of rTMS stimulation over both dorsolateral prefrontal cortices. Based on temporal independent component analysis of source-level EEG data, large-scale electrophysiological resting-state networks were reconstructed and connectivity values in each individual were quantified both before and after treatment. Our results show that high-density, resting-state EEG can reveal connectivity changes in brain networks after rTMS that correlate with symptom changes. The connectivity changes measured by EEG were primarily superficial cortical areas that correlate with previously shown default mode network changes revealed by fMRI. Further, higher baseline EEG connectivity values in the primary visual cortex were predictive of symptom reduction after rTMS. Our findings suggest that multimodal EEG and fMRI measures of brain networks can be biomarkers that correlate with the treatment effect of rTMS. Since EEG is compatible with rTMS, real-time navigation based on an EEG neuroimaging marker may augment rTMS optimization.


Subject(s)
Connectome/methods , Motion Sickness/diagnostic imaging , Neural Pathways/diagnostic imaging , Adult , Aged , Brain/diagnostic imaging , Brain/physiopathology , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Motion Sickness/physiopathology , Multimodal Imaging/methods , Neural Pathways/physiology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation/methods , Travel-Related Illness
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1698-1701, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946224

ABSTRACT

Intrinsic connectivity networks (ICNs) have been widely studied using functional magnetic resonance imaging (fMRI) data and electrophysiological data (e.g., electroencephalography (EEG) or magnetoencephalography (MEG)). Two major methods, i.e., seed-based correlation analysis (SBCA) and independent component analysis (ICA), are widely used to extract ICNs. Among them, ICA usually involves a dual regression analysis in order to obtain final spatial definitions of ICNs. Recently, we proposed a framework that includes cortical source imaging, source-level ICA, and statistical correlation analysis, to extract cortical ICNs from resting-state EEG data. In the present study, we proposed an alternative framework that uses sensor-level ICA and regression analysis instead of source-level ICA and correlation analysis, considering the well-studied characteristics of sensor-level ICs in differentiating neural activities from artifacts and the benefit of regression in accommodating multivariate analysis over correlation. In the present study, we mainly investigated the performance of the proposed procedure in extracting cortical ICNs. Meanwhile, we also investigated different variants of the regressors sampled at different frequencies to formulate the regression model. The results demonstrated that cortical ICNs corresponding to major ICNs identified in literature could be obtained by the proposed framework. In general, spatial patterns of cortical ICNs obtained via both correlation and regression analyses show statistically significant similarity. However, the cortical ICNs reconstructed using the regression analysis exhibit more focal and more superficial spatial patterns, in general, that the cortical ICNs from the correlation analysis. The different variants of regressors at the same sampling frequency do not produce obvious impacts on spatial patterns of cortical ICNs, while the different sampling frequencies show large effects on extracted spatial patterns of cortical ICNs. In summary, it is suggested that the proposed framework with the regression analysis is promising in reconstructing cortical ICNs from EEG, while the sampling frequency used in the formulation process of regressors may have large impacts on reconstructed cortical ICN patterns.


Subject(s)
Electroencephalography , Brain , Brain Mapping , Magnetic Resonance Imaging , Regression Analysis
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1915-1918, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440772

ABSTRACT

Gamma-band rhythmic abnormalities have been of significant interests in autism spectrum disorders (ASD). Most studies used magnetoencephalography (MEG) due to its advantage in measuring weak gamma signals as compared to electroencephalography (EEG). However, EEG is more accessible, portable, and importantly, more sensitive to cortical sources located at the crowns of gyri, than MEG. Therefore, it is extremely valuable if EEG can be used to detect gamma-band abnormalities in ASD, which could provide complementary insights on pathology of ASD. One challenge in detecting gamma-band neural activities is to remove muscular artifacts, which share the same frequency band. In the present study, we used a previously developed time-frequency independent component analysis (ICA)approach to probe EEG gamma-band abnormalities in ASD. We examined functional connectivity (FC) patterns on intrinsic connectivity networks (ICNs), i.e., the ICs representing distributed neural activities obtained from ICA, using the metrics of spectral power of individual ICNs and coherence between different ICNs. Seven ICNs that reassembled ICNs obtained from EEG data in the band of 2-30 Hz, were successfully identified in the gamma-band (31-50 Hz) data by the approach. Local over-connectivity in the bilateral frontal and left parietal ICNs, as well as long-range under-connectivity between left and right motor ICNs, were observed in ASD. In addition, the age-related effect was identified in the left motor and left parietal ICNs in healthy control, but not in ASD. These findings demonstrated a mixed pattern of gamma-band FC changes in ASD. It further indicated that the developed approach is promising in reconstructing gamma-band patterns from resting-state EEG signals.


Subject(s)
Autism Spectrum Disorder , Electroencephalography , Brain Mapping , Humans , Magnetoencephalography
9.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 1931-1934, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440776

ABSTRACT

Multimodal neuroimaging, such as combined electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), are being increasingly used to investigate the human brain in healthy and diseased conditions. However, certain neuroimaging data are typically acquired in different body positions, e.g., supine fMRI and upright EEG, overlooking the effect of body position on signal characteristics. In the current study we examined EEG signals in three different positions, i.e., supine, standing and sitting, in patients with a balance disorder called mal de debarquement syndrome (MdDS). Individuals with MdDS experience a chronic illusion of self-motion triggered by prolonged exposure to passive motion, such as from sea or air travel. The degree of perception of rocking dizziness is modulated by body position, suggesting a physiological effect related to body positions. In the present study, EEG features were quantified as peak frequency, peak amplitude, and average amplitude of the alpha band due to its strongest signal characteristics compared to other frequencies. The effect of body position was examined in EEG features from data acquired before and after the individuals received treatment with repetitive transcranial magnetic stimulation. Our results indicate a significant effect of body positions on the EEG signals in MdDS.


Subject(s)
Electroencephalography , Motion Sickness , Travel-Related Illness , Humans , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Travel
10.
Brain Topogr ; 31(6): 1047-1058, 2018 11.
Article in English | MEDLINE | ID: mdl-30099627

ABSTRACT

To determine intrinsic functional connectivity (IFC) related to symptom changes induced by rTMS in mal de debarquement syndrome (MdDS), a motion perceptual disorder induced by entrainment to oscillating motion. Twenty right-handed women (mean age: 52.9 ± 12.6 years; mean duration illness: 35.2 ± 24.2 months) with MdDS received five sessions of rTMS (1 Hz right DLPFC, 10 Hz left DLPFC) over consecutive days. High-density (128-channel) resting-state EEG were recorded prior to and following treatment sessions and analyzed using a group-level independent component (IC) analysis. IFC between 19 ICs was quantified by inter-IC phase coherence (ICPC) in six frequency bands (delta, theta, low alpha, high alpha, beta, gamma). Correlational analyses between IFCs and symptoms were performed. Symptom improvement after rTMS was significantly correlated with (1) an increase in low alpha band (8-10 Hz) IFC but a decrease of IFC in all other bands, and (2) high baseline IFC in the high alpha (11-13 Hz) and beta bands (14-30 Hz). Most treatment related IFC changes occurred between frontal and parietal regions with a linear association between the degree of symptom improvement and the number of coherent IFC changes. Frequency band and region specific IFC changes correlate with and can predict symptom changes induced by rTMS over DLPFC in MdDS. MdDS symptom response correlates with high baseline IFC in most frequency bands. Treatment induced increase in long-range low alpha IFC and decreases in IFC in other bands as well as the proportion of coherent IFC changes correlate with symptom reduction.


Subject(s)
Frontal Lobe/physiopathology , Parietal Lobe/physiopathology , Perceptual Disorders/therapy , Prefrontal Cortex/physiopathology , Transcranial Magnetic Stimulation , Travel-Related Illness , Vertigo/therapy , Adult , Aged , Electroencephalography , Female , Frontal Lobe/physiology , Humans , Middle Aged , Motion Perception , Neural Pathways , Parietal Lobe/physiology , Perceptual Disorders/complications , Perceptual Disorders/physiopathology , Prefrontal Cortex/physiology , Vertigo/etiology , Vertigo/physiopathology
11.
Front Neurosci ; 12: 365, 2018.
Article in English | MEDLINE | ID: mdl-29899686

ABSTRACT

Resting state networks (RSNs) have been found in human brains during awake resting states. RSNs are composed of spatially distributed regions in which spontaneous activity fluctuations are temporally and dynamically correlated. A new computational framework for reconstructing RSNs with human EEG data has been developed in the present study. The proposed framework utilizes independent component analysis (ICA) on short-time Fourier transformed inverse source maps imaged from EEG data and statistical correlation analysis to generate cortical tomography of electrophysiological RSNs. The proposed framework was evaluated on three sets of resting-state EEG data obtained in the comparison of two conditions: (1) healthy controls with eyes closed and eyes open; (2) healthy controls and individuals with a balance disorder; (3) individuals with a balance disorder before and after receiving repetitive transcranial magnetic stimulation (rTMS) treatment. In these analyses, the same group of five RSNs with similar spatial and spectral patterns were successfully reconstructed by the proposed framework from each individual EEG dataset. These EEG RSN tomographic maps showed significant similarity with RSN templates derived from functional magnetic resonance imaging (fMRI). Furthermore, significant spatial and spectral differences of RSNs among compared conditions were observed in tomographic maps as well as their spectra, which were consistent with findings reported in the literature. Beyond the success of reconstructing EEG RSNs spatially on the cortical surface as in fMRI studies, this novel approach defines RSNs further with spectra, providing a new dimension in understanding and probing basic neural mechanisms of RSNs. The findings in patients' data further demonstrate its potential in identifying biomarkers for the diagnosis and treatment evaluation of neuropsychiatric disorders.

12.
Brain Connect ; 7(9): 617-626, 2017 11.
Article in English | MEDLINE | ID: mdl-28967282

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) has been used in experimental protocols to treat mal de debarquement syndrome (MdDS), a neurological condition that represents a maladaptive brain state resulting from entrainment to external oscillating motion. Medical treatments and biomarkers for MdDS remain limited but neuromodulation with rTMS has shown evidence for therapeutic effects. This study took a neuroimaging approach to examine the neuromodulatory effect of rTMS on MdDS. Twenty individuals with MdDS underwent five daily treatments of rTMS over bilateral dorsolateral prefrontal cortex (DLPFC). Participants received 1 Hz over right DLPFC (1200 pulses) followed by 10 Hz over left DLPFC (2000 pulses). Resting state functional magnetic resonance imaging was acquired before and after treatments to determine functional connectivity changes associated with a positive treatment effect. A single-subject-based analysis protocol was developed to capture the degree of resting state functional connectivity (RSFC) between the rTMS target and the entorhinal cortex (EC), an area previously shown to be hypermetabolic in MdDS. Our results showed that rocking motion perception in subjects was modulated by rTMS over the DLPFC. Improvements in symptoms correlated most strongly with a post-rTMS reduction in functional connectivity between the left EC and the precuneus, right inferior parietal lobule, and the contralateral EC, which are part of the posterior default mode network. Positive response to rTMS correlated with higher baseline RSFC between the DLPFC and the EC. Our findings suggest that baseline prefrontal-limbic functional connectivity may serve as a predictor of treatment response to prefrontal stimulation in MdDS and that RSFC may serve as a dynamic biomarker of symptom status.


Subject(s)
Motion Sickness/therapy , Neural Pathways/physiology , Rest , Transcranial Magnetic Stimulation/methods , Travel , Adult , Aged , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Motion Sickness/diagnostic imaging , Motion Sickness/physiopathology , Neural Pathways/diagnostic imaging , Oxygen/blood , Prefrontal Cortex/physiology , Travel-Related Illness , Treatment Outcome , Visual Analog Scale
13.
Front Neurosci ; 11: 297, 2017.
Article in English | MEDLINE | ID: mdl-28611575

ABSTRACT

Electroencephalograph (EEG) has been increasingly studied to identify distinct mental factors when persons perform cognitively demanding tasks. However, most of these studies examined EEG correlates at channel domain, which suffers the limitation that EEG signals are the mixture of multiple underlying neuronal sources due to the volume conduction effect. Moreover, few studies have been conducted in real-world tasks. To precisely probe EEG correlates with specific neural substrates to mental factors in real-world tasks, the present study examined EEG correlates to three mental factors, i.e., mental fatigue [also known as time-on-task (TOT) effect], workload and effort, in EEG component signals, which were obtained using an independent component analysis (ICA) on high-density EEG data. EEG data were recorded when subjects performed a realistically simulated air traffic control (ATC) task for 2 h. Five EEG independent component (IC) signals that were associated with specific neural substrates (i.e., the frontal, central medial, motor, parietal, occipital areas) were identified. Their spectral powers at their corresponding dominant bands, i.e., the theta power of the frontal IC and the alpha power of the other four ICs, were detected to be correlated to mental workload and effort levels, measured by behavioral metrics. Meanwhile, a linear regression analysis indicated that spectral powers at five ICs significantly increased with TOT. These findings indicated that different levels of mental factors can be sensitively reflected in EEG signals associated with various brain functions, including visual perception, cognitive processing, and motor outputs, in real-world tasks. These results can potentially aid in the development of efficient operational interfaces to ensure productivity and safety in ATC and beyond.

14.
J Neural Eng ; 14(4): 046010, 2017 08.
Article in English | MEDLINE | ID: mdl-28540866

ABSTRACT

OBJECTIVE: Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. APPROACH: Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. MAIN RESULTS: Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. SIGNIFICANCE: Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain Mapping/methods , Brain/physiopathology , Electroencephalography/methods , Nerve Net/physiopathology , Adolescent , Adult , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Child , Child, Preschool , Electrophysiological Phenomena/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Young Adult
15.
Neuropsychologia ; 77: 346-58, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26362494

ABSTRACT

Performance errors have been attributed to distinct neural mechanisms in different tasks. Two temporally and physiologically dissociable neural patterns prior to errors, i.e., pre-stimulus alpha (8-13 Hz) power indicative of sustained attention and post-stimulus N2 amplitude indicative of cognitive control, have been widely (but independently) reported in many studies. However, it is still largely unknown whether these two neural mechanisms for error commission exist in a single task at the same time and, if so, whether they can be probed simultaneously and how they lead to response accuracy (collectively or separately). To this end, we measured high-density electroencephalography (EEG) signals in a color-word matching Stroop task. We quantified both patterns on EEG data from individual stimulus condition (congruent or incongruent), as well as on pooled data from both conditions. Enhanced pre-stimulus alpha power for errors was identified over the parieto-occipital area in the congruent condition and the pooled data. Reduced post-stimulus N2 amplitude was only revealed in the incongruent condition. More importantly, for the first time, a balanced interaction between these two EEG patterns was revealed in correct trials, but not in error trials. These findings suggest that errors in one task could occur due to distinct neural mechanisms, e.g., poor sustained attention, poor cognitive control, or missed balance between these two. The present results further suggest that the detection of neural patterns related to different neural mechanisms could be complicated by other modulation factors, such as stimulus condition. Therefore, more than one neural marker should be simultaneously monitored to effectively predict imminent errors.


Subject(s)
Alpha Rhythm/physiology , Brain/physiology , Evoked Potentials/physiology , Executive Function/physiology , Adult , Attention/physiology , Cognition/physiology , Electroencephalography , Female , Humans , Male , Stroop Test , Visual Perception/physiology , Young Adult
16.
Brain Topogr ; 28(1): 47-61, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25228153

ABSTRACT

The present study aimed to investigate the sensitivity of independent component analysis (ICA)- and channel-based methods in detecting electroencephalography (EEG) spatial-spectral-temporal signatures of performance errors. 128-channel EEG signals recorded from 18 subjects, who performed a color-word matching Stroop task, were analyzed. The spatial-spectral-temporal patterns in event-related potentials (ERPs) and oscillatory activities (i.e., power and phase) were measured at four selected channels, i.e., FCz, Pz, O1 and O2, from original EEG data after preprocessing, EEG data after additional current source density (CSD) transform, and back-projected EEG data from individual ICs after additional ICA analysis. Pair-wise correlation coefficient (CC) and mutual information (MI), calculated from three EEG data at four selected channels, were compared to examine mutual correlations in EEG signals obtained through three different means. Thereafter, EEG signatures of errors from these three means were statistically compared at multiple time windows in the contrast of error and correct responses. Significantly decreased CC and MI values were observed in CSD- and ICA-processed EEGs as compared with original EEG, with the smallest CC and MI in ICA EEG. Similar error patterns in ERPs and peri-response oscillatory activities were detected in all three EEGs, whereas the pre-stimulus and post-stimulus error-related oscillatory patterns identified in ICA EEG were either not or only partially detected in both original EEG and CSD EEGs in general. Both CSD and ICA processes can largely reduce signal correlations due to the volume conduction effect in original EEG, and EEG signatures of errors are better detected by ICA-based method than channel-based method (i.e., original and CSD EEGs). ICA provides the best sensitivity to detect EEG signatures linked to specific neural processes via disentangling superimposed channel-level EEG signals into distinct neurocognitive process-related component signals.


Subject(s)
Brain/physiology , Electroencephalography/methods , Mental Processes/physiology , Psychomotor Performance/physiology , Brain Waves , Evoked Potentials , Humans , Information Theory , Photic Stimulation , Signal Processing, Computer-Assisted , Stroop Test
17.
IEEE Trans Biomed Eng ; 61(7): 2070-80, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24686227

ABSTRACT

The long-lasting neuromodulatory effects of repetitive transcranial magnetic stimulation (rTMS) are of great interest for therapeutic applications in various neurological and psychiatric disorders, due to which functional connectivity among brain regions is profoundly disturbed. Classic TMS studies selectively alter neural activity in specific brain regions and observe neural activity changes on nonperturbed areas to infer underlying connectivity and its changes. Less has been indicated in direct measures of functional connectivity and/or neural network and on how connectivity/network alterations occur. Here, we developed a novel analysis framework to directly investigate both neural activity and connectivity changes induced by rTMS from resting-state EEG (rsEEG) acquired in a group of subjects with a chronic disorder of imbalance, known as the mal de debarquement syndrome (MdDS). Resting-state activity in multiple functional brain areas was identified through a data-driven blind source separation analysis on rsEEG data, and the connectivity among them was characterized using a phase synchronization measure. Our study revealed that there were significant long-lasting changes in resting-state neural activity, in theta, low alpha, and high alpha bands and neural networks in theta, low alpha, high alpha and beta bands, over broad cortical areas 4 to 5 h after the last application of rTMS in a consecutive five-day protocol. Our results of rsEEG connectivity further indicated that the changes, mainly in the alpha band, over the parietal and occipital cortices from pre- to post-TMS sessions were significantly correlated, in both magnitude and direction, to symptom changes in this group of subjects with MdDS. This connectivity measure not only suggested that rTMS can generate positive treatment effects in MdDS patients, but also revealed new potential targets for future therapeutic trials to improve treatment effects. It is promising that the new connectivity measure from rsEEG can be used to understand the variability in treatment response to rTMS in brain disorders with impaired functional connectivity and, eventually, to determine individually tailored stimulation parameters and treatment procedures in rTMS.


Subject(s)
Brain Waves/physiology , Brain/physiology , Electroencephalography/methods , Transcranial Magnetic Stimulation/methods , Adult , Brain/physiopathology , Female , Humans , Middle Aged , Motion Sickness/physiopathology , Motion Sickness/therapy , Signal Processing, Computer-Assisted , Travel , Travel-Related Illness
18.
J Zhejiang Univ Sci B ; 15(3): 225-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24599687

ABSTRACT

In this study, the effects of cardiac fibroblast proliferation on cardiac electric excitation conduction and mechanical contraction were investigated using a proposed integrated myocardial-fibroblastic electromechanical model. At the cellular level, models of the human ventricular myocyte and fibroblast were modified to incorporate a model of cardiac mechanical contraction and cooperativity mechanisms. Cellular electromechanical coupling was realized with a calcium buffer. At the tissue level, electrical excitation conduction was coupled to an elastic mechanics model in which the finite difference method (FDM) was used to solve electrical excitation equations, and the finite element method (FEM) was used to solve mechanics equations. The electromechanical properties of the proposed integrated model were investigated in one or two dimensions under normal and ischemic pathological conditions. Fibroblast proliferation slowed wave propagation, induced a conduction block, decreased strains in the fibroblast proliferous tissue, and increased dispersions in depolarization, repolarization, and action potential duration (APD). It also distorted the wave-front, leading to the initiation and maintenance of re-entry, and resulted in a sustained contraction in the proliferous areas. This study demonstrated the important role that fibroblast proliferation plays in modulating cardiac electromechanical behaviour and which should be considered in planning future heart-modeling studies.


Subject(s)
Fibroblasts/physiology , Heart Conduction System/physiology , Models, Cardiovascular , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Action Potentials/physiology , Computer Simulation , Fibroblasts/cytology , Finite Element Analysis , Humans , Myocytes, Cardiac/cytology
19.
Article in English | MEDLINE | ID: mdl-25571418

ABSTRACT

The present study examined the neural markers measured in event-related potentials (ERPs) for immediate performance accuracy during a cognitive task with less conflict, i.e., a Stroop color-word matching task, in which participants were required to judge the congruency of two feature dimensions of a stimulus. In an effort to make ERP components more specific to distinct underlying neural substrates, recorded EEG signals were firstly dissolved into multiple independent components (ICs) using independent component analysis (ICA). Thereafter, individual ICs with prominent sensory- or cognitive-related ERP components were selected to separately reconstruct scalp EEG signals at representative channels, from which ERP waveforms were built, respectively. Statistical comparisons on amplitudes of stimulus-locked ERP components, i.e., prefrontal P2 and N2, parietal P3, bilateral occipital P1 and N1, revealed significant reduced P3 amplitude in error trials than in correct trials. In addition, significant evident ERN was also observed in error trials but not in correct trials. Considering the temporal locus of semantic conflict in the present task, we concluded that reduced P3 amplitude in error trials reflect impaired resolving process of semantic conflict, which further lead to a performance error in the Stroop color-word matching task.


Subject(s)
Brain/physiology , Evoked Potentials/physiology , Language , Stroop Test , Task Performance and Analysis , Adult , Algorithms , Behavior , Color , Female , Humans , Male , Young Adult
20.
Article in English | MEDLINE | ID: mdl-24111005

ABSTRACT

Mental workload and time-on-task effect are two major factors expediting fatigue progress, which leads to performance decline and/or failure in real-world tasks. In the present study, electroencephalography (EEG) is applied to study mental fatigue development during an air traffic control (ATC) task. Specifically, the frontal theta EEG dynamics are firstly dissolved into a unique frontal independent component (IC) through a novel time-frequency independent component analysis (tfICA) method. Then the temporal fluctuations of the identified frontal ICs every minute are compared to workload (reflected by number of clicks per minute) and time-on-task effect by correlational analysis and linear regression analysis. It is observed that the frontal theta activity significantly increase with workload augment and time-on-task. The present study demonstrates that the frontal theta EEG activity identified by tfICA method is a sensitive and reliable metric to assess mental workload and time-on-task effect in a real-world task, i.e., ATC task, at the resolution of minute(s).


Subject(s)
Aviation , Frontal Lobe/physiology , Theta Rhythm , Frontal Lobe/physiopathology , Humans , Linear Models , Male , Mental Fatigue/physiopathology , Signal Processing, Computer-Assisted , Time Factors , Workload , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...